Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

Возрастная физиология и школьная гигиена изучает особенности жизнедеятельности организма в различные пе

Работа добавлена на сайт samzan.ru: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.1.2022

ЛЕКЦИОННЫЙ КОМПЛЕКС

ВВЕДЕНИЕ. ОБЩИЕ ЗАКОНОМЕРНОСТИ РОСТА И РАЗВИТИЯ ДЕТЕЙ И ПОДРОСТКОВ. ВОЗРАСТНАЯ ПЕРИОДИЗАЦИЯ

 1. Возрастная физиология и школьная гигиена  изучает особенности жизнедеятельности организма в различные периоды онтогенеза, функции органов, систем органов и организма в целом по мере его роста и развития своеобразия этих функций на каждом возрастном этапе. 

Предметом основы педиатрии как учебной дисциплины являются особенности развития физиологических функций, их формирования и регуляции, жизнедеятельности организма и механизмов его приспособления к внешней среде на разных этапах онтогенеза.

Задачи:

  •  выяснение основных закономерностей возрастного развития;
  •  определение временных границ возрастных периодов;
  •  выявление сенситивных и критических периодов развития;
  •  ознакомление с условно-рефлекторными основами процессов обучения и воспитания детей и подростков;
  •  ознакомление с физиологическими механизмами таких сложных психических процессов, как ощущение, восприятие, внимание, память, мышление и физиологическими основами речи и эмоциональных реакций;
  •  развитие у будущих учителей и воспитателей умение использовать знания морфофункциональных особенностей организма детей и подростков и физиологии их ВНД при организации учебно-воспитательной работы и анализе педагогических процессов и явлений.

2. Основы педиатрии тесно связана со многими разделами физиологической науки и широко  использует данные из многих других биологических наук. Для понимания закономерностей формирования функций в процессе онтогенеза человека необходимы данные таких физиологических наук, как физиология клетки, сравнительная и эволюционная физиология, физиология отдельных органов и систем.

В тоже время открываемые возрастной физиологией закономерности и законы базируются на данных различных биологических наук: эмбриологии, генетики, анатомии, цитологии, гистологии, биофизики, биохимии и т.д. А данные возрастной физиологии в свою очередь могут быть использованы для развития научных дисциплин. Например, важное значение имеет возрастная физиология для развитии детской травматологии и хирургии, антропологии и геронтологии, гигиены, возрастной психологии и педагогики. Формирование ценности здоровья и здорового образа жизни – задачи педагогической валеологии, которая черпает фактический материал и основные  теоретические положения из физиологии развития.

               3. Педагогическая эффективность воспитания и обучения находится в тесной зависимости от того, в какой мере учитываются анатомо-физиологические особенности детей и подростков, периоды развития, для которых характерна наибольшая восприимчивость к воздействию тех или иных факторов, а также периоды повышенной чувствительности и пониженной сопротивляемости организма. Объективное изучение функций мозга детей разного возраста позволяет выявить механизмы, определяющие специфику развития психических и психофизиологических функций на разных этапах развития детского организма, установить этапы, наиболее чувствительные к корригирующим педагогическим воздействиям, направленным на развитие таких важных для педагогического процесса функций, как восприятие информации, внимание, познавательные потребности.

4.       Ученные занимающиеся проблемами возрастной физиологии, пользуются тремя основными методами научного исследования: наблюдением, естественным и  лабораторным экспериментом.

  •  Метод наблюдения является основным в познании окружающей действительности и широко используется в любом научном исследовании.
  •  Естественный эксперимент является промежуточный формой между наблюдением и лабораторным экспериментом. Проводят его в обычных (естественных) условиях жизнедеятельности организма, лишь подбирая соответственно целям и задачам своего исследования.
  •  Метод лабораторного эксперимента отличается от естественного эксперимента тем, что какой либо функции организма в специально организованных условиях. Активно меняя эти условия, исследователь может целенаправленно вызвать то или иное физиологическое явление или процесс и определять их количественные и качественные характеристики.

5. Гигиена детей — наука, изучающая взаимодействие организма ребенка с внешней средой с целью разработки на этой основе гигиенических нормативов и требований, направленных на охрану и укрепление здоровья, гармоничное развитие и совершенствование функциональных возможностей организма детей и подростков.

Гигиена детей и подростков вооружает педагогику научно обоснованными гигиеническими рекомендациями по организации учебно-воспитательного процесса, режиму дня и отдыха учащихся, питанию детей, оборудованию, планировке и благоустройству детских учреждений. Основные положения школьной гигиены используются также при санитарно-техническом оснащении детских учреждений — устройстве отопления, водоснабжения, канализации, вентиляции и освещения.

Задача объединенного курса «Основы педиатрии и гигиены детей» состоит в том, чтобы вооружить студентов, будущих учителей-воспитателей:

-  современными сведениями о возрастных особенностях развивающегося организма;

-  знаниями закономерностей, лежащих в основе сохранения и укрепления здоровья школьников и поддержания  их высокой работоспособности при различных видах учебной и трудовой деятельности.

 Понятие роста и развития. Процессы роста и развития являются общебиологическими свойствами живой материи. Рост и развитие человека, начинающиеся с момента оплодотворения яйцеклетки, представляют собой непрерывный поступательный процесс, протекающий в течение всей его жизни.

Под развитием в широком смысле слова следует понимать процесс количественных и качественных изменений, происходящих в организме человека, приводящих к повышению уровней сложности организации и взаимодействия всех его систем. Развитие включает в себя три основных фактора; рост, дифференцировку органов и тканей, формообразование (приобретение организмом характерных, присущих ему форм). Они находятся между собой в тесной взаимосвязи и взаимозависимости.

Одной из основных физиологических особенностей процесса развития, отличающей организм ребенка от организма взрослого, является рост, т. е. количественный процесс, характеризующийся: непрерывным увеличением массы организма и сопровождающийся изменением числа его клеток или их размеров. В процессе роста увеличиваются число клеток, телесная масса и антропометрические показатели.

Закономерности роста и развития. Индивидуальное развитие каждого человека подчинено определенным закономерностям:

1.    Необратимость.

2.    Постепенность.

3.    Цикличность.

4.    Разновременность.

5. Наследственность.

6. Индивидуальность.

Периоды развития организма. Широкое применение в науке получила схема возрастной периодизации онтогенеза (т.е.индивидуального развития) человека, принятая на VII Всесоюзной конференции по проблемам возрастной морфологии, физиологии и биохимии АПН СССР в Москве в 1965 г.

№ п/п

Возрастные периоды

Продолжительность периодов

1

Новорожденность

1-10дней

2

Грудной возраст

10 дней – 1 год

3

Раннее детство

1-3 года

4

Первое детство

4-7 лет

5

Второе детство

8-12 лет (мальчики)

8-11 лет (девочки)

6

Подростковый возраст

13-16 лет (мальчики)

12-15 лет (девочки)

7

Юношеский возраст

17-21 год (юноши)

16-20 лет (девушки)

8

Зрелый возраст

І период

 

22-35 лет (мужчины)

21-35 лет (женщины)

ІІ период

36-60 лет (мужчины)

36-55 лет (женщины)

9

Пожилой возраст

61-74 года (мужчины)

56-74 года (женщины)

10

Старость

75-90 лет (мужчины и женщины)

11

долгожительство

90 лет и выше

 В этой периодизации учтены закономерности формирования организма и личности, относительно устойчивые морфофизиологические особенности человека, а также социальные факторы, связанные с обучением детей или уходом на пенсию лиц пожилого возраста. Для каждой стадии возрастной классификации характерен определенный средний уровень морфофизиологического развития организма.

Рост и пропорции тела на разных этапах развития. Характерной особенностью процесса роста детского организма являются его неравномерность и волнообразность. Периоды усиленного роста сменяются его некоторым замедлением.

Наибольшей интенсивностью рост ребенка отличается в первый год жизни и в период полового созревания т.е. в 11-15 лет. Если при рождении  рост ребёнка в среднем равен 50 см, то к концу первого года жизни он достигает 75—80 см, т. е. увеличивается более чем на 50%; масса тела за год утраивается— при рождении ребенка она равна в среднем 3,6—3,2 кг, а к концу года — 9,5—10,0 кг. В последующие годы до периода полового созревания темп роста снижается и ежегодная прибавка массы составляет 1,5—2,0 кг, с увеличением длины тела на 4,0—5,0 см.

Второй скачок —роста связан с наступлением полового созревания. За год длина тела увеличивается на 7—8 и даже 10 см. Причем с 11 —12 лет девочки несколько опережают в росте мальчиков в связи с более ранним началом полового созревания. В 13—14 лет девочки и мальчики растут почти одинаково, а с 14—15 лет мальчики и юноши обгоняют в росте девушек, и это превышение роста у мужчин над женщинами сохраняется в течение всей жизни.

Пропорции тела с возрастом также сильно меняются. С периода новорожденности и до достижения зрелого возраста длина тела увеличивается в 3,5 раза, длина туловища — в 3 раза, длина руки—в 4 раза, длина ноги — в 5 раз.

Новорожденный отличается от взрослого человека относительно короткими конечностями, большим туловищем и большой головой. С возрастом рост головы замедляется, а рост конечностей ускоряется. До начала периода полового созревания (предпубертатный период) половые различия в пропорциях тела отсутствуют, а в период полового созревания  (пубертатный период)  у юношей конечности становятся длиннее, а туловище короче и таз уже, чем у девушек.

Можно отметить три периода различия пропорций между длиной и шириной тела: от 4 до 6 лет, от 6 до 15 лет и от 15 лет до взрослого состояния. Если в предпубертатный период общий рост увеличивается за счет роста ног, то в пубертатном периоде — за счет роста туловища.


СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ НЕРВНОЙ СИСТЕМЫ, И ЕЕ ВОЗРАСТНЫЕ ОСОБЕННОСТИ

Нервная ткань

Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. При этом организм функционирует как единое целое. Благодаря нервной системе  осуществляется связь организма с внешней средой. Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи  и мышления – психический процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменить.

Нервная система образована нервной тканью, которая состоит из нейронов и мелких клеток-спутников.

Нейроны – главные клетки нервной ткани: они обеспечивают функции нервной системы.

Клетки-спутники окружают нейроны, выполняя питательную, опорную и защитную функции. Клеток –спутников примерно в 10 раз больше, чем нейронов.

Нейрон состоит из тела и отростков. Различают два типа отростков: дендриты и аксоны.  Отростки могут быть длинными и короткими. Большинство дендритов – короткие, сильно ветвящиеся отростки. У одного нейрона их может быть несколько. По дендритам нервные импульсы поступают к телу нервной клетки. Аксон – длинный, чаще всего мало ветвящийся отросток, по которому импульсы идут от тела клетки. Каждая нервная клетка имеет только 1 аксон, длина которого может достигать нескольких десятков сантиметров. По длинным отросткам нервных клеток импульсы в организме могут передаваться на большие расстояния.

            Длинные отростки часто покрыты оболочкой из жироподобного вещества белого цвета. Их скопления в центральной нервной системе образуют белое вещество. Короткие отростки и тела нейронов не имеют такой оболочки. Их скопления образуют серое вещество.

Нейроны различаются по форме и функциям. Одни нейроны, чувствительные, передают импульсы от органов чувств в спинной и головной мозг. Тела чувствительных нейронов лежат на пути к центральной нервной системе в нервных узлах. Нервные узлы – это скопления тел нервных клеток за пределами центральной нервной системы. Другие нейроны, двигательные, передают импульсы от спинного и головного мозга к мышцам и внутренним органам. Связь между чувствительными и двигательными нейронами осуществляется в спинном и головном мозге вставочными нейронами, тела и отростки которых не выходят за пределы мозга.

 Спинной и головной мозг связан со всеми органами нервами. Нервы – скопления длинных отростков нервных клеток, покрытых оболочкой. Нервы, состоящие из аксонов двигательных нейронов, называются двигательными нервами. Чувствительные нервы состоят из дендритов чувствительных нейронов. Большинство нервов содержат и аксоны и детриты. Такие нервы называют смешанными. По ним импульсы идут по двум направлениям – к центральной нервной системе и от нее к органам.

Отделы нервной системы

 Нервная система состоит из центрального и периферического отделов. Центральный отдел представлен головным и спинным мозгом, защищенным оболочками из соединительной ткани. К периферическому отделу относятся нервы и нервные узлы.

           Часть нервной системы, которая регулирует роботу скелетных мышц, называют соматической. Посредством соматической нервной систем человек может управлять движениями, произвольно вызывать или прекращать их. Часть нервной системы, регулирующую деятельность внутренних органов называют автономной. Работа автономной нервной системы не подчиняется воли человека.

            В автономной нервной системе различают два отдела: симпатический и парасимпатический. Большинство внутренних органов снабжаются нервами этих двух отделов. Они оказывают противоположные влияния на органы.

Рефлекс. Рефлекторная дуга

Ответную реакцию на раздражение организма, осуществляемую и контролируемую  центральной нервной системой, называют рефлексом. Путь, по которому по которому проводятся нервные импульсы при осуществления рефлекса, называют рефлекторной дугой. Рефлекторная дуга состоит из пяти частей: рецептора, чувствительного пути, участка центральной нервной системы, двигательного пути и рабочего органа.

            Рефлекторная дуга начинается рецептором. Каждый рецептор воспринимает определенный раздражитель: свет, звук, прикосновение, запах, температуру и др. Рецепторы преобразуют эти раздражители в нервные импульсы – сигналы нервной системы. Нервные импульсы имеют электрическую природу, распространяются по мембранам длинных отростков нейронов и одинаковы у животных и человека. От рецептора нервные импульсы по чувствительному пути передаются в центральную нервную систему. Этот путь образован чувствительным нейроном. От центральной нервной системы импульсы по двигательному пути идут к рабочему органу. В состав большинства рефлекторных дуг входят и вставочные нейроны, которые находятся как в спинном, так и в головном мозге.

            Рефлексы человека разнообразны. Некоторые из них очень просты. Например, отдергивание руки в ответ на укол или ожог кожи, чихание при попадании посторонних частиц в носовую полость. Во время рефлекторной реакции рецепторы рабочих органов передают сигналы в центральную нервную систему, которая контролирует, на сколько реакция эффективна. Таким образом, образом принцип работы нервной системы рефлекторный.

Передача возбуждения в синапсах

Возбуждение от одной нервной клетки к другой передается только в одном направлении: с аксона одного нейрона на тело клетки и дендриты другого нейрона. Аксоны большинства нейронов, подходя к другим нервным клеткам, ветвятся и образуют многочисленные окончания на телах этих клеток и их дендритах. Такие места контактов называют синапсами.  Синапс имеет сложное строение. Он образован двумя мембранами— пресииаптической и постсинаптической, между ними синаптическая щель. Пресинаптическая часть синапса находится на нервном окончании. Нервные окончания в центральной нервной системе имеют вид пуговок, колечек или бляшек. Каждая синаптическая пуговка покрыта пресинаптической мембраной. Постсинаптическая мембрана находится на теле или на дендритах нейрона, к которому передается нервный импульс. В пресинаптической области обычно наблюдаются большие скопления митохондрий.

Возбуждение через синапсы передается химическим путем с помощью особого вещества — посредника, или медиатора, находящегося в синаптических пузырьках, расположенных в синаптической бляшке. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин и норадреналин.

Синаптический аппарат в ЦНС, особенно в ее высших отделах, формируется в течение длительного периода постнатального развития Его формирование в большей мере определяется притоком внешней информации. На ранних этапах развития первыми созревают возбудительные синапсы, тормозные синапсы формируются позже. С их созреванием связано усложнение процессов переработки информации.

 

Возрастные изменения структуры нейрона и нервного волокна

На ранних стадиях эмбрионального развития нейрон, как правило, состоит из тела, имеющего два недифференцированных и неветвящихся отростка. Тело содержит крупное ядро, окруженное небольшим слоем цитоплазмы. Процесс созревания нейронов характеризуется быстрым увеличением цитоплазмы, увеличением в ней числа рибосом и формированием аппарата Гольджи, интенсивным ростом аксонов и дендритов. Различные типы нервных клеток созревают в онтогенезе гетерохронно. Наиболее рано (в эмбриональном периоде) созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток происходит после рождения под влиянием средовых факторов, что создает предпосылки для пластических перестроек в ЦНС.

Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации.     

Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения по нервному волокну.

Миелинизация раньше всего отмечена у периферических нервов, затем ей подвергаются волокна спинного мозга, стволовой части головного мозга, мозжечка и позже волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к момент рождения, чувствительные (например, зрительные) в течение первых месяцев жизни ребенка. К трехлетнему возрасту в основном завершается миелинизация нервных волокон, хотя рост миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.

Строение спинного мозга. Спинной мозг расположен в костном позвоночном канале. Он имеет вид длинного белого шнура диаметром около 1 см. В центре спинного мозга проходит узкий спинной канал, заполненный спинномозговой жидкостью. На передней и задней поверхности спинного мозга имеются две глубокие продольные борозды. Они делят его на правую и левую половины.

            Центральная часть спинного мозга образована серым веществом, которое состоит из вставочных и двигательных нейронов. Вокруг серого вещества расположено белое вещество, образовано длинными отростками нейронов. Они направляются вверх или вниз вдоль спинного мозга, образуя восходящие и нисходящие проводящие пути. От спинного мозга отходит 31 пара смешанных спинномозговых нейронов, каждый из которых начинается двумя корешками: передним и задним. Задние корешки – это аксоны чувствительных нейронов. Скопление тел этих нейронов образуют спинномозговые узлы. Передние корешки – это аксоны двигательных нейронов.

Функции спинного мозга. Спинной мозг выполняет 2 основные функции: рефлекторную и проводниковую.

            Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги, с которыми связано сокращение скелетных мышц тела (кроме мышц головы).

            Спинной мозг вместе с головным мозгом регулирует работу внутренних органов: сердца, желудка, мочевого пузыря, половых органов.

            Белое вещество спинного мозга обеспечивает связь,  согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда – к органам.

            Головной мозг регулирует работу спинного мозга. Известны случаи, когда в результате ранения или перелома позвоночника у человека прерывается связь между спинным мозгом и головным мозгом. Головной мозг у таких людей функционирует нормально. Но большинство спинномозговых рефлексов, центры которых расположены ниже места повреждения, исчезают. Такие люди могут поворачивать голову, совершать жевательные движения, изменять направления взгляда, иногда у них действуют руки. В тоже время нижняя часть их тела лишена чувствительности и неподвижна.

Возрастные особенности спинного мозга. Обеспечивая осуществление жизненно важных функций, спинной   мозг  развивается   раньше,   чем   другие   отделы   нервной   системы. Когда, у эмбриона головной мозг находится на стадии мозговых пузырей, спинной мозг достигает уже значительных размеров. На ранних стадиях развития плода спинной мозг заполняет всю полость позвоночного канала. Затем позвоночный столб обгоняет в росте спинной мозг, и к моменту рождения он заканчивается   на   уровне  третьего   поясничного   позвонка. У   новорожденных длина спинного мозга 14—16 см, к 10 годам она удваивается. В толщину спинной мозг растет медленно. На поперечном срезе спинного мозга детей раннего возраста отмечается преобладание передних рогов над задними. Увеличение размеров нервных клеток спинного мозга наблюдается у детей в школьные годы. 

Головной мозг. Головной мозг расположен в полости черепа. Он включают отделы: продолговатый мозг, мост, мозжечок, средний мозг, промежуточный мозг и большие полушария.  

В головном мозге, как и в спинном, имеется белое и серое вещество. Белое вещество образует проводящие пути. Они связывают головной мозг со спинным, а также части головного мозга между собой. Благодаря проводящим путям вся центральная нервная система функционирует как единое целое. Серое вещество в виде отдельных скоплений – ядер – располагается внутри белого вещества. Кроме того, серое вещество, покрывая полушария мозга и мозжечка, образует кору.

Функции отделов головного мозга. Продолговатый мозг и мост представляют собой продолжение спинного мозга и выполняют рефлекторную и проводниковую функции. Ядра продолговатого мозга и моста регулируют пищеварение, дыхание, сердечную деятельность и другие процессы, поэтому повреждение продолговатого мозга и моста опасно для жизни. С этими отделами мозга связана регуляция жевания, глотания, сосания, а также защитные рефлексы: рвота, чихание, кашель.

            Непосредственно над продолговатым мозгом расположен мозжечок. Поверхность его образована серым веществом – корой, под которой белом веществе находятся ядра. Мозжечок связан с многими отделами центральной нервной системы. Мозжечок регулирует двигательные акты. Когда нарушается нормальная деятельность мозжечка, люди теряют способность к точным согласованным движениям, сохранению равновесия тела. Таким людям не удается, например, продеть нитку через иголку, их походка неустойчива и напоминает походку пьяного, движение рук и ног при ходьбе неловкие, иногда резкие, размашистые.

            В среднем мозге расположены ядра, которые постоянно посылают к скелетным мышцам нервные импульсы, поддерживающие их напряжение – тонус. В среднем мозге проходят рефлекторные дуги ориентировочных рефлексов на зрительные и звуковые раздражения. Ориентировочные рефлексы проявляются в поворотах голов и тела в сторону раздражения.

            Продолговатый мозг, мост и средний мозг образуют ствол мозга. От него отходят 12 пар черепно-мозговых нервов. Нервы связывают мозг с органами чувств, мышцами и железами, расположенными на голове. Одна пара нервов – блуждающий нерв – связывает мозг с внутренними органами: сердцем, легкими, желудком, кишечником и др.

            Через промежуточный мозг поступают импульсы к коре больших полушарий от всех рецепторов. Большая часть сложных двигательных рефлексов, таких, как ходьба, бег, плавание, связана с промежуточным мозгом. Промежуточный мозг регулирует обмен веществ, потребление пищи и воды, поддержание постоянной температуры тела. Нейроны некоторых ядер промежуточного мозга вырабатывают биологические вещества, осуществляя гуморальную регуляцию.

            Строение больших полушарий. У человека сильно развитые большие полушария мозга (правое и левое) покрывают средний и промежуточный мозг. Поверхность больших полушарий образована серым веществом – корой. Под корой находится белое вещество, в толще которого расположены подкорковые ядра. Поверхность полушарий складчатая. Борозды и извилины увеличивают площадь поверхности коры в среднем до 2000 – 5000 см. Больше 2/3 площади поверхности коры скрыто в бороздах. В коре больших полушарий насчитывается около 14 млрд. нейронов. Каждое полушарие разделено бороздами на лобную, теменную, височную и затылочную доли. Самые глубокие борозды – это центральная, отделяющая лобную долю от теменной, и боковая, отграничивающая височную долю.

Значение коры больших полушарий. В коре больших полушарий различают чувствительные и двигательные зоны. В чувствительные зоны поступают импульсы от органов чувств, кожи, внутренних органов, мышц, сухожилий. При возбуждении нейронов чувствительных зон возникают ощущения. В коре затылочной доли находится зрительная зона. Нормальное зрение возможно, когда этот участок коры не поврежден. В височной зоне находится слуховая зона. При ее повреждении человек перестает различать звуки. В участке коры за центральной бороздой располагается зона кожно-мышечной чувствительности. Кроме того, в коре больших полушарий выделяют зоны вкусовой и обонятельной чувствительности. Перед центральной бороздой находится двигательная зона коры. Возбуждение нейронов этой зоны обеспечивает произвольные движения человека. Кора функционирует как единое целое и является материальной основой психической деятельности человека. Такие специфические психические функции, как память, речь, мышление и регуляция поведения, связаны с корой больших полушарий.

Возрастные особенности головного мозга. Развитие коры больших полушарий как филогенетически нового образования происходит в течение длительного периода онтогенеза. К моменту рождения ребенка кора больших полушарий имеет такой же тип строения, как у взрослого. Однако поверхность ее после рождения значительно увеличивается за счет формирования мелких борозд и извилин. В течение первых месяцев жизни развитие коры идет очень быстрыми темпами. Большинство нейронов приобретает зрелую форму, происходит миелинизация нервных волокон. Различные корковые зоны созревают неравномерно. Наиболее рано созревает соматосенсорная и двигательная кора, несколько позже зрительная и слуховая. Созревание проекционных (сенсорных и моторных) зон в основном завершается к 3 годам. Значительно позже созревает ассоциативная кора. К 7 годам отмечается значительный скачок в развитии ассоциативных областей. Однако их структурное созревание — дифференцировка нервных клеток, формирование нейронных ансамблей и связей ассоциативной коры с другими отделами мозга — происходит вплоть до подросткового возраста. Наиболее поздно созревают лобные области коры. Как будет показано ниже, постепенность созревания структур коры больших полушарий определяет возрастные особенности высших нервных функций и поведенческих реакций детей дошкольного и младшего школьного возраста.

 

 


ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ И ЕЕ ВОЗРАСТНЫЕ ОСОБЕННОСТИ.

ВОЗРАСТНАЯ ФИЗИОЛОГИЯ И ГИГИЕНА АНАЛИЗАТОРОВ

Условные и безусловные рефлексы

Совокупность сложных форм деятельности коры больших полушарий и ближайших к ней подкорковых образований, обеспечивающую взаимодействие целостного организма с внешней средой, называют высшей нервной деятельность.

В учении о высшей нервной деятельности вскрыты физиологические механизмы сложнейших процессов отражения человеком внешнего объективного мира.

Безусловные рефлексы — врожденные реакции организма, они сформировались и закрепились в процессе эволюции и передаются по наследству. Условные рефлексы возникают, закрепляются, угасают в течение жизни и являются индивидуальными. Безусловные рефлексы являются видовыми, т. е. они обнаруживаются у всех особей данного вида. Условные рефлексы могут быть у одних особей данного вида выработаны, а у других отсутствовать, они индивидуальны. Безусловные рефлексы не требуют специальных условий для своего возникновения, они обязательно возникают, если на определенные рецепторы подействуют адекватные раздражители. Условные рефлексы для своего образования требуют специальных условий, они могут образовываться на любые раздражители (оптимальной силы и длительности) с любого рецептивного поля. Безусловные рефлексы относительно постоянны, стойки, неизменны и сохраняются в течение всей жизни. Условные рефлексы изменчивы и более подвижны. Безусловные рефлексы могут осуществляться на уровне спинного мозга и мозгового ствола. Условные рефлексы могут образоваться на любые воспринимаемые организмом сигналы и являются преимущественно функцией коры больших полушарий, реализуемой с участием подкорковых структур. Безусловные рефлексы могут обеспечить существование организма только на самом раннем этапе жизни. Приспособление организма к постоянно меняющимся условиям среды обеспечивается вырабатывающимися в течение всей жизни условными рефлексами. Условные рефлексы изменчивы. В процессе жизни одни условные рефлексы, утрачивая свое значение, угасают, другие вырабатываются.

Биологическое значение условных рефлексов. Организм рождается с определенным фондом безусловных рефлексов. Они обеспечивают ему поддержание жизнедеятельности в относительно постоянных условиях существования. К ним относятся безусловные рефлексы: пищевые (жевание, сосание, глотание, отделение слюны, желудочного сока и др.), оборонительные (отдергивание руки от горячего предмета, кашель, чихание, мигание при попадании струи воздуха в глаз и др.), половые рефлексы (рефлексы, связанные с осуществлением полового акта, выкармливанием и уходом за потомством), рефлексы терморегуляционные, дыхательные, сердечные, сосудистые, поддерживающие постоянство внутренней среды организма (гомеостаз) и др.

Условные рефлексы обеспечивают более совершенное приспособление организма к меняющимся условиям жизни. Они способствуют нахождению пищи по запаху, своевременному уходу от опасности, ориентировке во времени и пространстве, Условнорефлекторное отделение слюны, желудочного, поджелудочного сока на вид, запах, время приема пищи создает лучшие условия для переваривания пищи еще до того, как она поступила в организм. Усиление газообмена и увеличение легочной вентиляции до начала работы, только при виде обстановки, в которой совершается работа, способствует большей выносливости и лучшей работоспособности организма во время мышечной деятельности.

При действии условного сигнала кора больших полушарий обеспечивает организму предварительную подготовку реагирования на те раздражители внешней среды, которые в последующее время окажут свое воздействие. Поэтому деятельность коры больших полушарий является сигнальной.

Учение И. П. Павлова о двух сигнальных системах действительности

Высшая нервная деятельность у человека, так же как и у животных, носит рефлекторный характер. И у человека вырабатываются условные рефлексы на различные сигналы внешнего мира или развивается внутреннее торможение.

Общими и для животных, и для человека являются анализ и синтез конкретных сигналов, предметов и явлений внешнего мира, составляющих первую сигнальную систему.

Высшая нервная деятельность человека имеет свои качественные особенности, которые ставят его над всем животным миром. Коллективная трудовая деятельность людей способствовала возникновению и развитию членораздельной речи, которая внесла новое в деятельность больших полушарий головного мозга. Только человеку свойственно высокоразвитое сознание, отвлеченное мышление. У человека в процессе его развития появилась «чрезвычайная прибавка» к механизмам работы мозга. Это вторая сигнальная система действительности. У человека появились, развились и чрезвычайно усовершенствовались сигналы второй системы в виде слов, произносимых, слышимых и читаемых. Слово, речевые сигналы могут не только заменять непосредственные сигналы, но и обобщать их, выделять отдельные признаки предметов и явлений, устанавливать их связи. Первая и вторая сигнальные системы неотделимы друг от друга, они функционируют совместно. Высшая нервная деятельность человека в этом смысле едина.

Типы высшей нервной деятельности

Понятие о типе высшей нервной деятельности. Условнорефлекторная деятельность зависит от индивидуальных свойств нервной системы. Индивидуальные свойства нервной системы обусловлены наследственными особенностями индивидуума и его жизненным опытом. Совокупность этих свойств называют типом высшей нервной деятельности.

Свойства нервных процессов. И. П. Павлов на основе многолетнего изучения особенностей образования и протекания условных рефлексов у животных выделил 4 основных типа высшей нервной деятельности. В основу деления на типы он положил три основных показателя: 1) силу процессов возбуждения и торможения; 2) уравновешенность, т. е. соотношение силы процессов возбуждения и торможения; 3) подвижность процессов возбуждения и торможения, т. е. скорость, с которой возбуждение может сменяться торможением, и наоборот.

Классификация типов высшей нервной деятельности. На основании проявления этих трех свойств И. П. Павлов выделил: 1) тип сильный, но неуравновешенный, с преобладанием возбуждения над торможением («безудержный» тип); 2) тип сильный, уравновешенный, с большой подвижностью нервных процессов («живой», подвижный тип); 3) тип сильный, уравновешенный, с малой подвижностью нервных процессов («спокойный», малоподвижный, инертный тип); 4) тип слабый с быстрой истощаемостью нервных клеток, приводящей к потере работоспособности.

И. П. Павлов считал, что основные типы высшей нервной деятельности, обнаруженные на животных, совпадают с четырьмя темпераментами, установленными у людей греческим врачом Гиппократом, жившим в IV веке до н. э. Слабый тип соответствует меланхолическому темпераменту; сильный неуравновешенный тип — холерическому темпераменту; сильный уравновешенный, подвижный тип — сангвиническому темпераменту; сильный уравновешенный, с малой подвижностью нервных процессов — флегматическому темпераменту.

Возрастные особенности ВНД

Ребенок рождается с набором безусловных рефлексов рефлекторные дуги, которых начинают формироваться на 3-м месяце пренатального развития. Так, первые сосательные и дыхательные движения появляются у плода именно на этом этапе онтогенеза, а активное движение плода наблюдается на 4—5-м месяце внутриутробного развития.

Простые пищевые условные реакций, несмотря на морфологическую и функциональную незрелость мозга, возникает уже на первые-вторые сутки, а к концу первого месяца развития образуются условные рефлексы с двигательного анализатора и вестибулярного аппарата: двигательные и временные. Все эти рефлексы очень медленно формируются, они чрезвычайно нежны и легко тормозятся. Со второго месяца жизни образуются рефлексы слуховые, зрительные и тактильные, а к 5-му месяцу развития у ребенка вырабатываются все основные виды условного торможения.

К концу первого года развития ребенок относительно хорошо различает вкус пищи и запахи, форму и цвет предметов, различает голоса и лица. Значительно совершенствуются движения, некоторые дети начинают ходить. Ребенок пытается произносить отдельные слова («мама», «папа», «деда», «тетя», «дядя» и др.), и у него формируются условные рефлексы на словесные раздражители. Следовательно, уже в конце первого года полным ходом идет развитие второй сигнальной системы и формируется ее совместная деятельность.

На втором году развития ребенка совершенствуются все виды условно-рефлекторной деятельности, и продолжается формирование второй сигнальной системы, значительно увеличивается словарный запас (250—300 слов); непосредственные раздражители или их комплексы начинают вызывать словесные реакции. Если у годовалого ребенка условные рефлексы на непосредственные раздражители образуются в 8—12 раз быстрее, чем на слово, то в два года слова приобретают сигнальное значение.

Решающее значение в формировании речи ребенка и всей второй сигнальной системы в целом имеет общение ребенка со взрослыми, т. е. окружающая социальная среда и процессы обучения. Дети, лишенные языковой среды, общения с людьми, не владеют речью, более того, их интеллектуальные способности остаются на примитивном животном уровне. Возраст с двух до пяти является «критическим» в овладении речью! Известны случаи, что дети, похищенные волками в раннем детстве и возвращенные в человеческое общество после пяти лет, способны научиться говорить лишь в ограниченных пределах, а возвращенные лишь после 10 лет не в состоянии произнести уже ни одного слова.

Второй и третий год жизни отличаются живой ориентировочной и исследовательской деятельностью. Ребенок тянется к каждому предмету, трогает его, ощупывает, толкает, пробует поднять и т. д. Эта особенность в значительной степени связана с морфологическим созреванием мозга, так как многие моторные корковые зоны и зоны кожно-мышечной чувствительности уже к 1—2 годам достигают достаточно высокой функциональной полноценности. Основным фактором, стимулирующим созревание этих корковых зон, являются мышечные сокращения и высокая двигательная активность ребенка. Ограничение его подвижности на этом этапе онтогенеза значительно замедляет психическое и физическое развитие.

Период до трех лет характеризуется также необычайной легкостью образования условных рефлексов на самые различные раздражители, в том числе на размеры, тяжесть, удаленность и окраску предметов. Особенностью двух-трехлетнего ребенка также является легкость выработки динамических стереотипов. Условные связи и динамические стереотипы у детей до трех лет отличаются необычайной прочностью, поэтому их переделка для ребенка всегда событие неприятное.

Возраст от трех до пяти лет характеризуется дальнейшим развитием речи и совершенствованием нервных процессов (увеличивается их сила, подвижность и уравновешенность), процессы внутреннего торможения приобретают доминирующее значение, но запаздывательное торможение и условный тормоз вырабатываются с трудом. Динамические стереотипы вырабатываются все так же легко. Их количество увеличивается с каждым днем, но их переделка уже не вызывает нарушений высшей нервной деятельности.

К пяти семи годам еще более повышается роль сигнальной системы слов, и дети начинают свободно говорить. Это обусловлено тем, что только к семи годам постнатального развития функционально созревает материальный субстрат второй сигнальной системы.

С 7 до 12 лет (младший школьный возраст) —период относительно «спокойного» развития высшей нервной деятельности. Сила процессов торможения и возбуждения, их подвижность, уравновешенность и взаимная индукция, а также уменьшение силы внешнего торможения обеспечивают возможности широкого обучения ребенка. Это переход «от рефлекторной эмоциональности к интеллектуализации эмоций». Однако только на базе обучения письму и чтению слово становится предметом сознания ребенка, вое более отдаляясь от связанных с ним образов предметов и действий. Незначительное ухудшение процессов высшей нервной деятельности наблюдается только в 1-м классе в связи с процессами адаптации к школе.

Особое значение для учителя и воспитателя имеет следующий возрастной период — подростковый II — 12 до 15—17 лет). Это время больших эндокринных преобразований в организме подростков и формирования у них вторичных половых признаков, что в свою очередь сказывается и на свойствах высшей нервной деятельности. Нарушается уравновешенность нервных процессов, большую силу приобретает возбуждение, замедляется прирост подвижности нервных процессов, значительно ухудшается дифференцировка условных раздражителей. Ослабляется деятельность коры, а вместе с тем и второй сигнальной системы. Все функциональные изменения приводят к психической неуравновешенности подростка (вспыльчивость, «взрывная» ответная реакция даже на незначительные раздражения) и частым конфликтам с родителями и педагогами. Положение подростка, как правило, усугубляется все более усложняющимися требованиями к нему со стороны взрослых и прежде всего школы.

Только правильный здоровый режим, спокойная обстановка, твердая программа занятий, физическая культура и спорт, интересная внеклассная работа, доброжелательность и понимание со стороны взрослых являются основными условиями для того, чтобы переходный период прошел без развития функциональных расстройств и связанных с ним осложнений в жизни ребенка.

Старший школьный возраст (15—18 лет) совпадает с окончательным морфофункциональным созреванием всех физиологических систем человеческого тела. Повышается роль корковых процессов в регуляции психической деятельности и физиологических функций организма, ведущее значение получают корковые процессы, обеспечивающие функционирование второй сигнальной системы. Все свойства основных нервных процессов достигают уровня взрослого человека.

Зрительный анализатор

Зрительная сенсорная система, как и любая другая, состоит из трех отделов:

1. Периферический отдел –глазное яблоко, в частности - сетчатка глаза (воспринимает световое раздражение)

2. Проводниковый отдел - аксоны ганглиозных клеток - зрительный нерв - зрительный перекрест - зрительный тракт - промежуточный мозг (коленчатые тела)- средний мозг (четверохолмие ) - таламус

3. Центральный отдел - затылочная доля: область шпорной борозды и прилегающих извилин

Периферический отдел зрительной сенсорной системы

Оптическая система лаза, строение и физиология сетчатки. К оптической системе глаза относятся: роговица, водянистая влага, радужка, зрачок, хрусталик и стекловидное тело

Глазное яблоко, имеет шаровидную форму и помещается в костной воронке - глазнице. Спереди он защищен веками. По свободному краю века растут ресницы, которые защищают глаз от попадания в него частиц пыли. У верхненаружного края глазницы расположена слезная железа, выделяющая слезную жидкость, омывающую глаз. Глазное яблоко имеет несколько оболочек, одна из которых - наружная - склера, или белочная оболочка (белого цвета). В передней части глазного яблока она переходит в прозрачную роговицу (преломляет лучи света)

Под белочной оболочкой расположена сосудистая оболочка, состоящая из большого количества сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). Она содержит пигмент, придающий цвет глазу. В ней имеется круглое отверстие - зрачок. Здесь расположены мышцы, которые изменяют величину зрачка и, в зависимости от этого, в глаз попадает большее или меньшее количество света, т.е. происходит регуляция поступления потока света.  Позади радужки в глазу располагается хрусталик, представляющий собой эластичную, прозрачную двояковыпуклую линзу, окруженную ресничной мышцей. Его оптической функцией является преломление и фокусировка лучей, кроме того, он отвечает за аккомодацию глаза. Хрусталик может менять свою форму - становиться более или менее выпуклые и соответственно сильнее или слабее преломлять лучи света. Благодаря этому человек способен отчетливо видеть предметы, расположенные на разном расстоянии. Роговица и хрусталик обладают светопреломляющей способностью

За хрусталиком полость глаза заполняется прозрачной желеобразной массой - стекловидным телом, которое пропускает лучи света и является светопреломляющей средой.

Светопроводящие и светопреломляющие среды (роговица, водянистая влага, хрусталик, стекловидное тело) выполняют также функцию фильтрации света, пропуская только световые лучи с диапазоном  длин волн от400 до 760 мкм. При этом ультрафиолетовые лучи задерживаются роговицей, а инфракрасные -  водянистой влагой.

Внутренняя поверхность глаза выстлана тонкой, сложной по строению и наиболее функционально важной оболочкой - сетчаткой. В ней выделяют два отдела: задний отдел или зрительную часть и передний отдел – слепую часть.

В сетчатке (в зрительной ее части) содержатся не только периферический отдел анализатора - рецепторные клетки, но и значительная часть его промежуточного отдела. Фоторецепторные клетки (палочки и колбочки) являются своеобразно измененными нервными клетками и потому относятся к первично чувствующим или нейросенсорным рецепторам. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв. Палочки более чувствительны к цвету и обеспечивают сумеречное зрение. Колбочки воспринимают цвет и цветовое зрение.

Возрастные особенности зрительного анализатора. В процессе постнатального развития органы зрения человека претерпевают значительные морфофункциональные перестройки. Например, длина глазного яблока у новорожденного составляет 16 мм, а его масса – 3,0г, к 20 годам эти цифры соответственно увеличиваются до 23 мм и 8,0 г. В процессе развития меняется и цвет глаз. У новорожденных в первые годы жизни радужка содержит мало пигментов и имеет серовато-голубоватый оттенок. Окончательная окраска радужки формируется только к 10-12 годам.

Процесс развития и совершенствования зрительного анализатора, как и у других органов чувств, идет от периферии к центру. Миелинизация зрительных нервов заканчивается уже к 3-4 месяцам постнатального онтогенеза. Причем развитие сенсорных и моторных функций зрения идет синхронно. В первые дни после рождения движения глаз независимы друг от друга. Механизмы координации и способность фиксировать взглядом предмет, образно говоря, «механизм точной настройки», формируется в возрасте от 5 дней до 3-5 месяцев. Функциональное созревание зрительных зон коры головного мозга по некоторым данным происходит уже к рождению ребенка, по другим несколько позже.

Аккомодация у детей выражена в большей степени, чем у взрослых . эластичность хрусталика с возрастом уменьшается, и соответственно падает аккомодация. У дошкольников вследствие более плоской формы хрусталика очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82% детей, а близорукость – у 2,5%. С возрастом это соотношение изменяется и число близоруких значительно увеличивается, достигая к 14-16 годам 11%. Важным фактором, способствующим появлению близорукости, является нарушение гигиены зрения: чтение лежа, выполнение уроков в плохо освещенной комнате, увеличение  напряжения на глаза и др.

В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, колбочки еще незрелые и их количество невелико. Элементарные функции цветоощущения у новорожденных, видимо, есть, но полноценное включение колбочек в работу происходит столько к концу 3-го года жизни. Однако на данной возрастной ступени оно еще неполноценно. Своего максимального развития ощущения цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка. С возрастом повышается также острота зрения и улучшается стереоскопическое зрение. Наиболее интенсивно стереоскопическое зрение изменяется до 9-10 лет и достигает к 17-22 годам своего оптимального уровня. С 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Глазомер у девочек и мальчиков 7-8 лет значительно лучше, чем у дошкольников, и не имеет половых различий, но приблизительно в 7 раз хуже, чем у взрослых.

Поле зрения особенно интенсивно развивается в дошкольном возрасте, и к 7 годам оно составляет приблизительно 80% от размеров поля зрения взрослого. В развитии поля зрения наблюдаются половые особенности. В последующие годы размеры поля зрения сравниваются, а с 13-14 лет его размеры у девочек больше. Указанные возрастные и половые особенности развития поля зрения должны учитываться при организации обучения детей и подростков, так как поле зрения определяет объем учебной информации воспринимаемой ребенком, т. е. пропускную способность зрительного анализатора.

Слуховой анализатор

Слуховой анализатор состоит из трех отделов:

1. Периферический отдел включающий наружное, среднее и внутреннее ухо;

2. Проводниковый отдел - аксоны биполярных клеток - улитковый нерв - ядра продолговатого мозга - внутреннее коленчатое тело – слуховая область коры больших полушарий;

3. Центральный отдел – височная доля.

 

Строение уха

Наружное ухо включает ушную раковину и наружный слуховой проход. Его функция состоит в улавливании звуковых колебаний.

Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего — костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластичной кольцевой связки прикреплено основание стремени, Другое отверстие — круглое окно, или окно улитки,— затянуто тонкой соединительнотканной мембраной. Внутри барабанной полости находятся три слуховые косточки — молоточек, наковальня и стремя, соединенные между собой суставами.

Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которые через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укреплено в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30—40 раз.

При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт. Пространство между стенками костного и перепончатого лабиринтов заполнено жидкостью — перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня. От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластин кой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается разделенным на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала. Функция кортиева органа. Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки. Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верхними концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям слуховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15—20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной-спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены внутри от тоннеля в один ряд, а кнаружи—в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположены в центральном канале костного стержня улитки, где они образуют так называемый спиральный узел, гомологичный межпозвоночному узлу спинномозговых нервов. Каждая из трех с половиной тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волосковые клетки, количество которых достигает 15—20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к возникновению возбуждения в волосковых клетках, которое передается на конечные разветвления нервных волокон.


ВОЗРАСТНЫЕ ОСОБЕННОСТИ  ЭНДОКРИННОЙ СИСТЕМЫ

 

Гуморальная регуляция - это регуляция процессов жизнедеятельности с помощью веществ, поступающих во внутреннюю среду организма. Гуморальная регуляция обеспечивает более длительные адаптивные реакции. К факторам гуморальной регуляции относятся гормоны, электролиты, медиаторы, простагландины, различные метаболиты и т.д.

Высшей формой гуморальной регуляции является гормональная.

Гормоны - это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, или железами внутренней секреции, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма.

Эндокринная железа - это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов. К эндокринным железам относятся гипофиз, эпифиз, щитовидная железа, надпочечники (мозговое и корковое вещество), паращитовидные железы.

К органам со смешанным типом секреции относятся поджелудочная железа и половые железы. Одна и та же железа внутренней секреции может продуцировать неодинаковые по своему действию гормоны.

 

Регуляция функций желез внутренней секреции

Регуляция деятельности желез внутренней секреции осуществляется нервными и гуморальными факторами. Нейроэндокринные зоны гипоталамуса, эпифиз, мозговое вещество надпочечников и другие участки хромаффинной ткани регулируются непосредственно нервными механизмами. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Основную роль в физиологических механизмах регуляции играют нейрогормональные и гормональные механизмы, а также прямые влияния на эндокринные железы тех веществ, концентрацию которых регулирует данный гормон.

Регулирующее влияние ЦНС на деятельность эндокринных желез осуществляется через гипоталамус. Гипоталамус получает по афферентным путям мозга сигналы из внешней и внутренней среды. Нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы, продуцируя рилизинг-гормоны. Рилизинг-гормоны избирательно регулируют функции клеток аденогипофиза. Среди рилизинг-гормонов различают либерины - стимуляторы синтеза и выделения гормонов аденогипофиза и статины - ингибиторы секреции.

Некоторые железы внутренней секреции, такие как поджелудочная железа, околощитовидные железы, не находятся под влиянием гормонов гипофиза. Деятельность этих желез зависит от концентрации тех веществ, уровень которых регулируется этими гормонами. Гипофиз. Гипофизу принадлежит особая роль в системе желез внутренней секреции. С помощью своих гормонов он регулирует деятельность других эндокринных желез.

Гипофиз состоит из передней (аденогипофиз), промежуточной и задней (нейрогипофиз) долей. Промежуточная доля у человека практически отсутствует.

Гормоны передней доли гипофиза

В аденогипофизе образуются следующие гормоны: адренокортикотропный (АКТГ), или кортикотропин; тиреотропный (ТТГ), или тиреотропин, гонадотропные: фолликулостимулирующий (ФСГ), или фоллитропин, и лютеинизирующий (ЛГ), или лютропин, соматотропный (СТГ), или гормон роста, или соматотропин, пролактин. Первые 4 гормона регулируют функции так называемых периферических желез внутренней секреции. Соматотропин и пролактин сами действуют на ткани-мишени.

Адренокортикотропный гормон (АКТГ), или кортикотропин, оказывает стимулирующее действие на кору надпочечников. Избыток АКТГ приводит к гиперкортицизму, т.е. увеличенной продукции кортикостероидов, преимущественно глюкокортикоидов. Это заболевание развивается при аденоме гипофиза и носит название болезни Иценко-Кушинга. Основные проявления ее: гипертония, ожирение, имеющее локальный характер (лицо и туловище), гипергликемия, снижение иммунной защиты организма. Недостаток гормона ведет к уменьшению продукции глюкокортикоидов, что проявляется нарушением метаболизма и снижением устойчивости организма к различным влияниям среды.

Тиреотропный гормон (ТТГ), или тиреотропин, активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Избыток тиреотропина проявляется гиперфункцией щитовидной железы, клинической картиной тиреотоксикоза.

Фолликулостимулирующий гормон (ФСГ), или фоллитропин, вызывает рост и созревание фолликулов яичников и их подготовку к овуляции. У мужчин под влиянием ФСГ происходит образование сперматозоидов.

Лютеинизирующий гормон (ЛГ), или лютропин, способствует разрыву оболочки созревшего фолликула, т.е. овуляции и образованию желтого тела. ЛГ стимулирует образование женских половых гормонов - эстрогенов. У мужчин этот гормон способствует образованию мужских половых гормонов - андрогенов.

Соматотропный гормон (СТГ), или соматотропин, или гормон роста, принимает участие в регуляции процессов роста и физического развития. Если гиперфункция передней доли гипофиза проявляется в детском возрасте, то это приводит к усиленному пропорциональному росту в длину - гигантизму. Если гиперфункция возникает у взрослого человека, когда рост тела в целом уже завершен, наблюдается увеличение лишь тех частей тела, которые еще способны расти. Это пальцы рук и ног, кисти и стопы, нос и нижняя челюсть, язык, органы грудной и брюшной полостей. Это заболевание называется акромегалией. Причиной являются доброкачественные опухоли гипофиза. Гипофункция передней доли гипофиза в детстве выражается в задержке роста - карликовости. Умственное развитие не нарушено.

Пролактин стимулирует рост молочных желез и способствует образованию молока.

 Гормоны задней доли гипофиза. Эти гормоны образуются в гипоталамусе. В нейрогипофизе происходит их накопление.

Антидиуретический. гормон (АДГ), или вазопрессин, осуществляет в организме 2 основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона.

В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином.

Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.

Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину. Недостаток продукции окситоцина вызывает слабость родовой деятельности.

Структура и функция гипофиза претерпевают существенные изменения с возрастом. У новоржденного масса гипофиза 0,1-,15г, к 10 годам она достигает ,3г (у взрослых - 0,55-,65г).

В период, предшествующий половому созреванию, значительно усиливается секреция гонадотропных гормонов, достигающая максимума в период полового созревания.

Щитовидная железа. Гормонами щитовидной железы являются: тироксин (тетрайодтиронин) и трийодтиронин, тиреокальцитонин. Содержание тироксина в крови больше, чем трийодтиронина. Однако активность трийодтиронина выше, чем тироксина. Йодсодержащие гормоны выполняют в организме следующие функции: 1) усиление всех видов обмена (белкового, липидного, углеводного), повышение основного обмена и усиление энергообразования в организме; 2) влияние на процессы роста, физическое и умственное развитие; 3) увеличение частоты сердечных сокращений; 4) стимуляция деятельности пищеварительного тракта: повышение аппетита, усиление перистальтики кишечника, увеличение секреции пищеварительных соков; 5) повышение температуры тела за счет усиления теплопродукции; 6) повышение возбудимости симпатической нервной системы.

Нарушения функции щитовидной железы проявляются ее гипофункцией и гиперфункцией. Если недостаточность функции развивается в детском возрасте, то это приводит к задержке роста, нарушению пропорций тела, полового и умственного развития. Такое патологическое состояние называется кретинизмом. У взрослых гипофункция щитовидной железы приводит к развитию патологического состояния - микседемы. При этом заболевании наблюдается торможение нервно-психической активности, что проявляется в вялости, сонливости, апатии, снижении интеллекта, уменьшении возбудимости симпатического отдела вегетативной нервной системы, нарушении половых функций, угнетении всех видов обмена веществ и снижении основного обмена У таких больных увеличена масса тела за счет повышения количества тканевой жидкости и отмечается одутловатость лица. Отсюда и название этого заболевания: микседема - слизистый отек

Гипофункция щитовидной железы может развиться у людей проживающих в местностях, где в воде и почве отмечается недостаток йода. Это так называемый эндемический зоб. Щитовидная железа при этом заболевании увеличена (зоб), возрастает количество фолликулов, однако из-за недостатка йода гормонов o6разуется мало, что приводит к соответствующим нарушениям в организме, проявляющимся в виде гипотиреоза.

При гиперфункции щитовидной железы развивается заболевание тиреотоксикоз (диффузный токсический зоб, Базедова болезнь, болезнь Грейвса). Характерными признаками этого заболевания являются увеличение щитовидной железы (зоб), тахикардия, повышение обмена веществ, особенно основного, потеря массы тела, увеличение аппетита, нарушение теплового баланса организма, повышение возбудимости и раздражительности.

В процессе онтогенеза масса щитовидной железы значительно возрастает - с 1 г в период новорожденности до 10 г к 10 годам. С началом полового созревания рост железы особенно интенсивен, в этот же период возрастает функциональное напряжение щитовидной железы. Содержание тиреотропина в крови интенсивно нарастает до 7 лет. увеличение содержания тироидных гормонов отмечается к 10 годам и на завершающих этапах полового созревания (15-16лет). В возрасте от 5-6 к 9-10 годам качественно изменяются гипофизарно-щитовидные взаимоотношения - снижается чувствительность к которым отмечена в 5-6 лет.

Недостаточность функции ЩЖ в детском возрасте приводит к кретинизму. При этом задерживается рост, и нарушаются пропорции тела, задерживается половое развитие, отстает психическое развитие.

Околощитовидные (паращитовидные) железы

Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Клетки этих желез вырабатывают паратгормон. Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).

Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза.

Надпочечники являются парными железами. Это эндокринный орган, который имеет жизненно важное значение. В надпочечниках выделяют два слоя - корковый и мозговой.

Гормоны коры надпочечников

В коре надпочечников выделяют 3 зоны: наружную - клубочковую, среднюю - пучковую и внутреннюю - сетчатую. В клубочковой зоне продуцируются в основном минералокортикоиды, в пучковой - глюкокортикоиды, в сетчатой - половые гормоны преимущественно андрогены).

Минералокортикоиды участвуют в регуляции минерального обмена. Основным представителем минералокортикоидов является альдостерон. Альдостерон способствует развитию воспалительной реакции.

Глюкокортикоиды. К глюкокортикоидным гормонам относятся кортизол, кортизон, кортикостерон. Эти гормоны оказывают влияние на обмен углеводов, белков и жиров, угнетают все компоненты воспалительной реакции, оказывают противоаллергическое действие.

Содержание глюкокортикоидов в крови самое высокое в 6-8 часов утра.

Половые гормоны играют определенную роль только в детском возрасте, когда внутрисекреторная функция половых желез еще слабо развита. Половые гормоны коры надпочечников способствуют развитию вторичных половых признаков. Гормоны мозгового слоя надпочечников

Мозговой слой надпочечников вырабатывает катехоламины: адреналин и норадреналин. На долю адреналина приходится около 80%, на долю норадреналина - около 20% гормональной секреции.

Физиологические эффекты адреналина и норадреналина аналогичны активации симпатической нервной системы, но гормональный эффект является более длительным. В то же время продукция этих гормонов усиливается при возбуждении симпатического отдела вегетативной нервной системы. Адреналин стимулирует деятельность сердца, суживает сосуды, кроме коронарных, сосудов легких, головного мозга, работающих мышц, на которые он оказывает сосудорасширяющее действие. Адреналин расслабляет мышцы бронхов, тормозит перистальтику и секрецию кишечника и повышает тонус сфинктеров, расширяет зрачок, уменьшает потоотделение, усиливает процессы катаболизма и образования энергии. Адреналин выражение влияет на углеводный обмен, усиливая расщепление гликогена в печени и мышцах, в результате чего повышается содержание глюкозы в плазме крови.

Поджелудочная железа относится к железам со смешанной функцией. Эндокринная функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). В островках синтезируются инсулин и глюкагон.

Инсулин влияет на все виды обмена веществ, но, прежде всего на углеводный. Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови. Недостаточная секреция инсулина приводит к заболеванию, которое получило название сахарного диабета.

У больных сахарным диабетом нарушается не только углеводный, но и белковый и жировой обмен.

Глюкагон является антагонистом инсулина. Под влиянием глюкагона происходит распад гликогена в печени до глюкозы. В результате этого повышается содержание глюкозы в крови. Глюкагон способствует мобилизации жира из жировых депо.

Половые железы или гонады - семенники (яички) у мужчин и яичники у женщин относятся к числу желез со смешанной секрецией. Внешняя секреция связана с образованием мужских и женских половых клеток - сперматозоидов и яйцеклеток. Внутрисекреторная функция заключается в секреции мужских и женских половых гормонов и их выделении в кровь. Как семенники, так и яичники синтезируют и мужские и женские половые гормоны, но у мужчин значительно преобладают андрогены, а у женщин - эстрогены. Половые гормоны способствуют эмбриональной дифференцировке, в последующем развитию половых органов и появлению вторичных половых признаков, определяют половое созревание и поведение человека.

Мужские половые гормоны (андрогены)

Интерстициальные клетки яичек (клетки Лейдига) вырабатывают мужские половые гормоны. В небольшом количестве они также вырабатываются в сетчатой зоне коры надпочечников у мужчин и женщин и в наружном слое яичников у женщин.

Тестостерон участвует в половой дифференцировке гонады и обеспечивает развитие первичных (рост полового члена и яичек) и вторичных (мужской тип оволосения, низкий голос, характерное строение тела, особенности психики и поведения) половых признаков, появление половых рефлексов.

Гормон участвует и в созревании мужских половых клеток - сперматозоидов. Тестостерон увеличивает синтез белка, особенно в мышцах, что приводит к увеличению мышечной массы, к ускорению процессов роста и физического развития.

Тестостерон уменьшает содержание жира в организме.

Женские половые гормоны

Эти гормоны вырабатываются в женских половых железах - яичниках, во время беременности - в плаценте, а также в небольших количествах клетками Сертоли семенников у мужчин. В фолликулах яичников осуществляется синтез эстрогенов, желтое тело яичника продуцирует прогестерон.

К эстрогенам относятся эстрон, эстрадиол и эстриол. Наибольшей физиологической активностью обладает эстрадиол. Эстрогены стимулируют развитие первичных и вторичных женских половых признаков. Под их влиянием происходит рост яичников, матки, маточных труб, влагалища и наружных половых органов.

Эстрогены стимулируют развитие и рост молочных желез. Кроме этого эстрогены влияют на развитие костного скелета, ускоряя его созревание. Эстрогены оказывают выраженный анаболический эффект, усиливают образование жира и его распределение, типичное для женской фигуры, а также способствуют оволосению по женскому типу.

Эстрогены задерживают азот, воду, соли. Под влиянием этих гормонов изменяется эмоциональное и психическое состояние женщин. Во время беременности эстрогены способствуют росту мышечной ткани матки, эффективному маточно-плацентарному кровообращению, вместе с прогестероном и пролактином - развитию молочных желез.

При овуляции в желтом теле яичника, которое развивается на месте лопнувшего фолликула, вырабатывается гормон - прогестерон. Прогестерон усиливает основной обмен. Прогестерон обладает антиальдостероновым эффектом. Концентрации тех или иных женских половых гормонов в плазме крови зависят от фазы менструального цикла.

Тимус или вилочковая железа - парный орган, расположенный в верхнем средостении. После 30 лет подвергается возрастной инволюции. В вилочковой железе наряду с образованием из стволовых клеток костного мозга Т-лимфоцитов продуцируются гормональные факторы - тимозин и тимопоэтин.

Гормоны обеспечивают дифференцировку Т-лимфоцитов и играют определенную роль в клеточных иммунных реакциях.


ВОЗРАСТНЫЕ ОСОБЕННОСТИ  ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

Общие сведения об опорно-двигательной системе. К опорно-двигательному аппарату относятся скелет и мышцы, объединенные в единую костно-мышечную систему. Скелет и мышцы являются опорными структурами организма, ограничивающими полости, в которых расположены внутренние органы. С помощью опорно-двигательного аппарата осуществляется одна из важнейших функций организма — движение. Движение — основное внешнее проявление деятельности организма и вместе с тем необходимый фактор его развития. В условиях ограничения движений резко замедляется как физическое, так и психическое развитие.

Скелет — структурная основа тела. Скелет образует структурную основу тела и в значительной мере определяет его форму и размер. Основными частями скелета являются скелет туловища, состоящий из позвоночного столба и грудной клетки, скелет верхних и нижних конечностей и скелет головы — череп.

 Роль костей не ограничивается функцией опоры. В состав их тканей входят минеральные соли— одни из важнейших регуляторов обменных процессов. В костях находится один из основных органов кроветворения — костный мозг.

Кость – сложный орган, состоящий из костной ткани, надкостницы, костного мозга, кровеносных и лимфатических сосудов и нервов.

Кость  покрыта надкостницей. Это тонкая соединительнотканная оболочка, которая богата нервами и сосудами, проникающими из нее в кость через особые отверстия. К надкостнице прикреплены связки и мышцы.

Строение костей обеспечивает их основное свойство — механическую прочность. Свойства кости обеспечиваются также их химическим составом. Кости содержат 60% минеральных веществ, 30%  органических,  10%  составляет вода.

Минеральные вещества, в особенности кальций, делают кости твердыми, органические вещества придают им упругость.

У детей в костях преобладают органические вещества; их скелет гибкий, эластичный, в связи с чем легко деформируется, искривляется при длительной и тяжелой нагрузке и неправильных положениях тела. С возрастом содержание минеральных веществ в костях увеличивается, отчего кости становятся менее эластичными и более хрупкими.

Органические и минеральные вещества делают кость прочной, твердой и упругой и в сочетании с особенностями строения костной ткани, расположением ее пластин, ориентированных в направлении сил давления и растяжения, придают кости свойства, превосходящие многие строительные материалы и металлы.

Рост и развитие костей. Молодые кости растут в длину за счет хрящей, расположенных между их концами и телом. К моменту окончания роста костей хрящи замещаются костной тканью. За период роста в костях ребенка количество воды сокращается, а количество минеральных веществ увеличивается. Содержание органических веществ при этом  уменьшается. Развитие скелета у мужчин заканчивается к 20—24 годам. При этом прекращается рост костей в длину, а их хрящевые части заменяются костной тканью. Развитие скелета у женщин заканчивается на 2—3 года раньше.

Строение и функция суставов. Различают неподвижные, малоподвижные и подвижные соединения костей, или суставы.

Неподвижное соединение костей происходит путем их срастания. Движения при этом крайне ограниченны или вовсе отсутствуют. Неподвижность костей мозгового черепа, например, достигается тем, что многочисленные выступы одной кости входят в соответствующее углубление другой. Такое соединение костей получило название шва.

Небольшая подвижность достигается упругими хрящевыми прокладками между костями. Такие прокладки находятся между отдельными позвонками. При сокращении мышц эти прокладки сжимаются и позвонки сближаются. При ходьбе, беге, прыжках хрящ действует как амортизатор, смягчая резкие толчки и предохраняя тело от сотрясения.

Подвижные соединения костей встречаются чаще, они обеспечиваются истинными суставами. Сочленяющиеся концы костей покрыты гиалиновым хрящом толщиной 0,2—0,6 мм. Этот хрящ эластичен, имеет гладкую блестящую поверхность, что значительно уменьшает трение между костями и тем самым облегчает их движение. Область сочленения костей окружена суставной сумкой (капсулой) из очень плотной соединительной ткани.

Части скелета и их развитие

Позвоночный столб и его развитие

Позвоночный столб человека является осевой частью, стержнем скелета, верхним концом соединяющегося с черепом, нижним — с костями таза. Позвоночный столб занимает 40% длины тела. В нем различают следующие отделы: шейный состоящий из 7 позвонков, грудной — из 12 позвонков, поясничный — из 5 позвонков, крестцовый — из 5 позвонков и копчиковый — из 4—5 позвонков. У взрослого человека крестцовые позвонки срастаются в одну кость—крестец, а копчиковые — в копчик. Позвоночные отверстия всех позвонков образуют позвоночный канал, в котором помещается спинной мозг. К отросткам позвонков прикрепляются мышцы.

Между позвонками расположены межпозвоночные диски из волокнистого хряща; они способствуют подвижности позвоночного столба. С возрастом высота дисков меняется.

Рост позвоночного столба наиболее интенсивно происходит в первые 2 года жизни. В течение первых полутора лет жизни рост различных отделов позвоночника относительно равномерен. Начиная с 1,5 до 3 лет замедляется рост шейных и верхнегрудных позвонков и быстрее начинает увеличиваться рост поясничного отдела, что характерно для всего периода роста позвоночника.

Усиление темпов роста позвоночника отмечается в 7—9 лет и в период полового созревания, после завершения, которого прибавка в росте позвоночника очень невелика.

Структура тканей позвоночного столба существенно изменяется с возрастом. Окостенение, начинающееся еще во внутриутробном периоде, продолжается в течение всего детского возраста. До 14 лет окостеневают только средние части позвонков. В период полового созревания появляются новые точки окостенения в виде пластинок, которые сливаются с телом позвонка после 20 лет. Процесс окостенения отдельных позвонков завершается с окончанием ростовых процессов — к 21—23 годам. Позднее окостенение позвоночника обусловливает его подвижность и гибкость в детском возрасте. Кривизна позвоночника, являющаяся его характерной особенностью, формируется в процессе индивидуального развития ребенка. В самом раннем возрасте, когда ребенок начинает держать головку, появляется шейный изгиб, направленный выпуклостью вперед (лордоз). К 6 месяцам, когда ребенок начинает сидеть, образуется грудной изгиб с выпуклостью назад (кифоз), Когда ребенок начинает стоять и ходить, образуется поясничный лордоз.

Грудная клетка

Грудная клетка образует костную основу грудной полости. Она защищает сердце, легкие, печень и служит местом прикрепления дыхательных мышц и мышц верхних конечностей. Грудная клетка состоит из грудины, 12 пар ребер, соединенных сзади с позвоночным столбом.

Форма грудной клетки существенно изменяется с возрастом. В грудном возрасте она как бы сжата с боков, ее переднезадний размер больше поперечного (коническая форма). У взрослого же преобладает поперечный размер.

На протяжении первого года жизни постепенно меняется форма грудной клетки, что связано с изменением положения тела и центра тяжести. Уменьшается угол ребер по отношению к позвоночнику. Соответственно изменению грудной клетки увеличивается объем легких. Изменение положения ребер способствует увеличению движений грудной клетки и позволяет эффективнее осуществлять дыхательные движения.

К 6 годам устанавливаются свойственные взрослому относительные величины верхней и нижней части грудной клетки, резко увеличивается наклон ребер.

Скелет конечностей

Скелет верхних конечностей состоит из пояса верхних конечностей и костей свободных конечностей. Пояс верхних конечностей образуют лопатки и ключицы.

Скелет свободной верхней конечности образован плечевой костью, подвижно соединенное с лопаткой, предплечьем, состоящим из лучевой и локтевой кости, и костями кисти. В состав кисти входят мелкие кости запястья, пять длинных костей пясти и кости пальцев кисти.

Ключицы относятся к стабильным костям, мало изменяющимся в онтогенезе. Лопатки окостеневают в постнатальном онтогенезе, процесс этот завершается после 16-18 лет. окостенение свободных конечностей начинается с раннего детства и заканчивается в 18-20 лет. Кости запястья у новорожденного только намечаются и становятся ясно видимыми к 7 годам. Окончательно не сформированная  кисть быстро утомляется, детям младшего школьного возраста не удается беглое письмо.

Скелет нижних конечностей состоит из тазового пояса и костей свободных нижних конечностей. Тазовый пояс образует крестец и неподвижно соединенные с ним две тазовые кости. У новорожденного каждая тазовая кость состоит из трех костей (подвздошной, лобковой и седалищной), сращение которых начинается с 5—6 лет и завершается к 17—18 годам.

В подростковом возрасте происходит постепенное срастание крестцовых позвонков в единую кость – крестец. У девочек при резких прыжках с большой высоты, при ношении обуви на высоких каблуках несросшиеся кости  таза могут сместиться, что приведет к неправильному сращению их и, как следствие, сужению выхода из полости малого таза, что может в дальнейшем весьма затруднить прохождение плода при родах.

После 9 лет отмечаются различия в форме таза у мальчиков и девочек: у мальчиков таз более высокий и узкий, чем у девочек,

Тазовые кости имеют круглые впадины, куда входят головки бедренных костей.

Скелет свободной нижней конечности состоит из бедренной кости, двух костей голени — большеберцовой и малоберцовой и костей стопы. Стопа образована костями предплюсны, плюсны и фаланг пальцев стопы.

Стопа человека образует свод, который опирается на пяточную кость и на передние концы костей плюсны. Различают продольный и поперечный своды стопы. Продольный, пружинящий свод стопы присущ только человеку, и его формирование связано с прямохождением. По своду стопы равномерно распределяется тяжесть тела, что имеет большое значение при переносе тяжестей. Свод действует как пружина, смягчая толчки тела при ходьбе.

У новорожденного ребенка сводчатость стопы не выражена, она формируется позже, когда ребенок начинает ходить.

Сводчатое расположение костей стопы поддерживается большим количеством крепких суставных связок. При длительном стоянии и сидении, переносе больших тяжестей, при ношении узкой обуви  связки  растягиваются, что приводит к уплощению стопы.

Череп

Череп — скелет головы. Различают два отдела черепа: мозговой, или черепную коробку, и лицевой, или кости лица. Мозговой отдел черепа  является вместилищем головного мозга.

У новорожденного черепные кости соединены друг с другом мягкой соединительнотканной перепонкой. Эта перепонка особенно велика там, где сходятся несколько костей. Это – роднички. Роднички располагаются по углам обеих теменных костей; различают непарные лобный и затылочный и парные передние боковые и задние боковые роднички. Благодаря родничкам кости крыши черепа могут заходить своими краями друг на друга. Это имеет большое значение при прохождении головки плода по родовым путям. Малые, роднички зарастают к 2—3 месяцам, а наибольший — лобный — легко прощупывается и зарастает лишь к полутора годам. У детей в раннем возрасте мозговая часть черепа более развита, чем лицевая. Наиболее сильно кости черепа растут в течение первого года жизни. С возрастом, особенно с 13-14  лет, лицевой отдел растет более энергично начинает преобладать над мозговым.

Мышечная система

Мышечная система и ее возрастные особенности

В организме человека по структуре и функции различают три типа мышц, мышцы скелета, мышцы сердца и гладкие мышцы внутренних органов и сосудов.

Активной частью опорно-двигательного аппарата являются скелетные мышцы.

Строение и классификация скелетных мышц. В организме человека насчитывается около 600 скелетных мышц. Форма и величина мышц зависят от выполняемой ими работы. Различают мышцы длинные, широкие, короткие и круговые. Длинные мышцы располагаются на конечностях, короткие — там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины, груди). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами.

По функции различают мышцы-сгибатели, разгибатели, приводящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу.

В процессе развития ребенка отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее – жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз. В период полового созревания (12—16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. В 15—18 лет продолжается дальнейший рост поперечника мышц. Развитие мышц продолжается до 25—30 лет.

Мышцы ребенка бледнее, нежнее и более эластичны, чем мышцы взрослого человека.

Основные функциональные свойства мышц. Мышца обладает тремя важнейшими свойствами: возбудимостью, проводимостью и сократимостью. Сократимость является специфическим свойством мышц.

Работа и сила мышц. Сокращаясь, мышцы выполняют работу, Работа мышц зависит от их силы. Мышца тем сильнее, чем больше в ней мышечных волокон, т. е. чем она толще. При пересчете на 1 см2 поперечного сечения мышца способна поднять груз до 10 кг.

Сила мышц зависит и от особенностей прикрепления их к костям, Кости вместе с прикрепляющимися к ним мышцами являются своеобразными рычагами, и мышца может развивать тем большую силу, чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести она прикрепляется.

При динамической работе поочередно сокращаются различные группы мышц. Мышцы, производящие динамическую работу, быстро сокращаются п, работая с большим напряжением, скоро утомляются. Но обычно различные группы мышечных волокон при динамической работе сокращаются поочередно, что дает возможность мышце длительное время совершать работу. Нервная система управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность работать экономно, с высоким коэффициентом  полезного действия.

Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых будет выполнена наибольшая величина работы, а утомление будет развиваться постепенно.

Мышечный тонус. Мышцы человека в состоянии покоя частично сокращены. Это состояние частичного сокращения, когда мышца напряжена, но не производит движения, называется тонусом мышцы. Тоническое напряжение мышц необходимо для того, чтобы удержать внутренние органы в нормальном положении и сохранять определенную позу. Во время сна, при наркозе тонус мышц несколько снижается, тело расслабляется. Полностью исчезает мышечный тонус только после смерти. Величина тонуса мышц находится в зависимости от функционального состояния центральной нервной системы.

В период новорожденности и в первые месяцы жизни детей тонус скелетных мышц повышен. Это связано с повышенной возбудимостью красного ядра среднего мозга. По мере усиления влияний, поступающих из структур головного мозга по пирамидной системе и регулирующих функциональную активность спинного мозга, тонус мышц снижается. Снижение тонуса отмечается во втором полугодии жизни ребенка, что является необходимой предпосылкой для развития ходьбы. Тонус мышц играет важную роль в осуществлении координации движений.

 

Мышечная масса и сила мышц в различные возрастные периоды.

Масса мышц интенсивно нарастает, когда ребенок начинает ходить, и к 2—3 годам составляет примерно 23% массы тела, далее повышается к 8 годам до 27%. У подростков 15 лет она составляет 32,6% массы тела. Наиболее быстро масса мышц нарастает в возрасте от 15 до 17—18 лет, и в юношеском возрасте она составляет 44,2% массы тела. Увеличение массы мышц достигается как их удлинением, так и увеличением их толщины, в основном за счет диаметра мышечных волокон. К 3—4 годам диаметр мышц возрастает в 2—2,5 раза. С возрастом резко увеличивается количество миофибрилл. К 7 годам по сравнению с новорожденными оно увеличивается в 15—20 раз. В период от 7 до 14 лет рост мышечной ткани происходит как за счет продолжающихся структурных преобразований мышечного волокна, так и в связи со значительным ростом сухожилий. Рост поперечника мышечных волокон и внутримышечных соединительнотканных волокон продолжается до 20—25 лет и во многом зависит от уровня двигательной активности и тренированности. Увеличение мышечной массы и структурные преобразования мышечных волокон, связанные с увеличением основного сократительного субстрата, приводят к увеличению с возрастом мышечной силы. В дошкольном возрасте сила мышц незначительна. После 4—5 лет увеличивается сила отдельных мышечных групп.

Исследования показывают, что школьники 7—11 лет обладают еще сравнительно низкими показателями мышечной силы. Силовые и особенно статические упражнения вызывают у них быстрое утомление. Дети этого возраста более приспособлены к кратковременным скоростно-силовым динамическим упражнениям.

Однако младших школьников следует постепенно приучать к сохранению статических поз. Особое значение статические упражнения имеют для выработки и сохранения правильной осанки.

Наиболее интенсивно мышечная сила увеличивается в подростковом возрасте. У мальчиков прирост силы начинается в 13— 14 лет, у девочек раньше — с 10—12 лет, что, возможно, связано с более ранним наступлением у девочек полового созревания. В 13-14 лет четко проявляются половые различия в мышечной силе, показатели относительной силы мышц девочек значительно уступают соответствующим показателям мальчиков. Поэтому в занятиях с девочками-подростками и девушками следует особенно строго дозировать интенсивность и тяжесть упражнений.

С 18 лет рост силы замедляется и к 25—26 годам заканчивается. Установлено, что скорость восстановления мышечной силы у подростков и взрослых почти одинакова: у 14-летних — 97,5%, у 16-летних — 98,9% и у взрослых — 98,9% от исходных величин. Развитие силы разных мышечных групп происходит неравномерно.

Точность воспроизведения движений также существенно  меняется с возрастом. Дошкольники 4-5 лет не могут совершать тонкие точные движения, воспроизводящие заданную программу, как  в пространстве, так и во времени. В младшем школьном возрасте возможность точного воспроизведения движений по заданной программе существенно возрастает. С 9-10 лет организация точных движений происходит по типу взрослого.

В процессе развития ребенка изменяется также способность воспроизводить заданную величину мышечного напряжения. Точность воспроизведения мышечного напряжения невелика у детей дошкольного и младшего школьного возраста. Она повышается лишь к 11—16 годам.

В течение длительного периода онтогенеза формируется и одно из важнейших качеств – выносливость  (способность человека к продолжительному   выполнению   того   или   иного   вида   умственной или физической (мышечной) деятельности без снижения их эффективности. Выносливость к динамической работе еще очень невелика в 7-11 лет. С 11 —12 лет мальчики и девочки становятся более выносливыми.

Темпы развития многих двигательных качеств особенно высоки в младшем школьном возрасте, что, учитывая интерес детей к занятиям физкультурой и спортом, дает основание целенаправленно развивать двигательную активность в этом возрасте.


СИСТЕМА ПИЩЕВАРЕНИЯ
, И ЕЕ ВОЗРАСТНЫЕ ОСОБЕННОСТИ. ГИГИЕНА ПИТАНИЯ. ОБМЕН  ВЕЩЕСТВ И ЭНЕРГИИ

Пищеварением называют процесс физической и химической обработки пищи и превращения ее в более простые и растворимые соединения, которые могут всасываться, переноситься кровью, усваиваться организмом.

Физическая обработка заключается в измельчении пищи, ее протирании, растворении. Химические изменения представляют собой сложные реакции, происходящие в различных отделах пищеварительной  системы, где под влиянием ферментов, содержащихся в секретах пищеварительных желез, происходит расщепление сложных нерастворимых органических соединений, содержащихся в пище, превращение их в растворимые и легко усваиваемые организмом вещества. Ферменты — это биологические катализаторы, вырабатываемые организмом и отличающиеся определенной специфичностью. Каждый фермент действует только на определенные химические соединения: Одни расщепляют белки, другие — жиры, третьи — углеводы. В пищеварительном тракте в результате химической обработки белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, углеводы (полисахариды)—до моносахаридов.

Органы, осуществляющие процессы пищеварения, образуют пищеварительную систему, состоящую из ротовой полости, слюнных желез, пищевода, желудка, тонкого и толстого кишечника, печени и поджелудочной железы.

Пищеварение в ротовой полости. В ротовой полости начинается физическая и химическая обработка пищи, а также осуществляется ее апробирование. Измельчение пищи осуществляется зубами.  Зубы закладываются и развиваются в толще челюсти. Зачатки постоянных зубов закладываются во внутриутробном периоде развития. На 6—8-м месяце жизни у ребенка начинают прорезываться временные, или молочные, зубы. Первыми прорезываются средние резцы нижней челюсти, потом появляются верхние средние и верхние боковые; к концу первого года жизни прорезывается обычно 8 зубов. В течение второго года жизни заканчивается прорезывание всех 20 молочных зубов. В 6—7 лет у детей начинают выпадать молочные зубы, и на смену им постепенно растут постоянные зубы. Прорезывание постоянных зубов заканчивается к 14 годам. Исключение составляют зубы мудрости, появление которых порой задерживается до 25— 30 лет; в 15% случаев они отсутствуют на верхней челюсти вообще.

В ротовую полость открываются протоки трех пар крупных слюнных желез: околоушные, поднижнечелюстные и подъязычные. Кроме крупных есть мелкие слизистые слюнные железки. Они разбросаны почти по всей слизистой оболочке ротовой полости и языка. Слюна, содержащая 99% воды, смачивает измельченную пищу. В составе ее органических веществ содержатся ферменты, осуществляющие химическую обработку пищи. Основной из этих ферментов — амилаза — расщепляет сложные углеводы до мальтозы. Расщепление углеводов не заканчивается в ротовой полости. В слюне содержится также слизистое органическое вещество муцин. Он способствует тому, что обработанный в ротовой полости комок становится скользким и легко проходит по пищеводу. Длина пищевода у новорожденных составляет 10 см, у 5-летних детей— 16 см, у 15-летних— 19 см, у взрослых-25 см. Слюнные железы функционируют с момента рождения ребенка, но в первые месяцы слюны отделяется мало. С возрастом количество отделяющейся слюны увеличивается: наиболее заметные сдвиги в слюноотделении отмечаются у детей от 9 до 12 месяцев и от 9 до 11 лет. Всего в сутки у детей отделяется до 800 см3 слюны.

Пищеварение в желудке. Из ротовой полости пищевой комок поступает в глотку, проглатывается, попадает в пищевод и, наконец, в желудок. Здесь происходит дальнейшая физическая и химическая обработка пищи и ее расщепление. Общий объем желудка взрослого человека составляет 1—2 л. В желудке вырабатывается  желудочный сок. Желудочный сок человека — бесцветная жидкость кислой реакции, с большим содержанием соляной кислоты (0,5%) и слизи. Слизь предохраняет оболочку желудка от механических и химических повреждений. Соляная кислота обладает способностью губительно действовать на бактерии, выполняя тем самым защитную функцию. Под влиянием соляной кислоты активизируется основной фермент желудочного сока пепсин, расщепляющий белки до альбумоз и пептонов. Желудочный сок содержит также фермент, расщепляющий жиры,— липазу. В желудочном соке детей, особенно в период вскармливания их молоком, содержится фермент — химозин, вызывающий свертывание молока. Под влиянием соляной кислоты или продуктов переваривания в слизистой оболочке желудка образуется особый гормон — гастрин, который всасывается в кровь и усиливает секрецию желудочных желез.

Отделение желудочного сока начинается рефлекторно, уже тогда, когда пища попадает в полость рта. Оно может возникнуть и условнорефлекторно. Обычно акт еды начинается с вида и запаха пищи. Желудочный сок, который начинает выделяться до поступления пищи, называется аппетитным.

Возрастные особенности. Объем желудка с момента рождения до 1 года увеличивается в 10 раз. Форма желудка у новорожденного округлая, после 1,5 лет желудок приобретает грушевидную форму, а с 6—7 лет его форма не отличается от желудка взрослых. Желудочные железы в первые годы жизни ребенка еще недоразвиты и малочисленны, хотя и способны секретировать желудочный сок, в котором содержание соляной кислоты, количество и функциональная активность ферментов значительно ниже, чем у взрослого человека. Так, количество ферментов, расщепляющих белки, увеличивается особенно интенсивно с 1,5 до 3 лет, затем в 5—6 лет и в школьном возрасте до 12—14 лет. Содержание соляной кислоты увеличивается до 15—16 лет. Низкая концентрация соляной кислоты обусловливает слабые бактерицидные свойства желудочного сока у детей до 6—7 лет, что способствует более легкой восприимчивости детей этого возраста к желудочно-кишечным инфекциям.

Следует отметить, что у детей до 10 лет в желудке активно идут процессы всасывания, в то время как у взрослых эти процессы осуществляются в основном только в тонком кишечнике.

От характера пищи зависит время переваривания ее в желудке. Так, у детей грудного возраста при правильном грудном вскармливании желудок освобождается от пищи через 2,5—3 ч, при питании коровьим молоком — через 3—4 ч. Пища, содержащая значительные количества белков и жиров, задерживается в желудке 4,5—6,5 ч. В среднем в желудке пища находится от 3—4 до 10 ч

Роль печени и поджелудочной железы в пищеварении. Частично переварившееся содержимое желудка в виде пищевой кашицы, пропитанной кислым желудочным соком, перемещается движениями мускулатуры поступает в начальный отдел тонкого кишечника — двенадцатиперстную кишку. Здесь пищевая масса обрабатывается соком двух основных пищеварительных желез — печени и поджелудочной железы и соком мелких кишечных желез. Под влиянием содержащихся в них ферментов происходит наиболее интенсивная химическая переработка белков, жиров и углеводов, которые, подвергаясь дальнейшему расщеплению, доводятся в двенадцатиперстной кишке до такого состояния, что могут всасываться и усваиваться организмом.

Сок, выделяемый поджелудочной железой,— бесцветная прозрачная жидкость щелочной реакции. В нем есть фермент трипсин, расщепляющий белковые вещества до аминокислот; трипсин вырабатывается в неактивной форме клетками железы и активируется ферментом кишечного сока; содержащийся в соке. Фермент липаза активируется желчью, поступающей из печени и желчного пузыря, и, действуя на жиры, превращает их в глицерин и жирные кислоты. Ферменты амилаза и мальтаза превращают сложные углеводы в моносахариды типа глюкозы. Отделение поджелудочного сока продолжается 6—14 ч и зависит от состава и свойств принятой пищи.

Масса поджелудочной железы увеличивается в возрасте от 1 года до 8 лет. Активность липазы увеличивается к концу первого года жизни и остается высокой до 9-летнего возраста. Активность ферментов, расщепляющих углеводы, на протяжении первого года жизни увеличивается в 3—4 раза, а максимальных значений достигает к 9 годам. В процессах переваривания пищевых веществ двенадцатиперстной кишке важнейшую роль играет желчь.

Желчь, во-первых, переводит в активное состояние липазу; во-вторых, желчь эмульгирует жиры; в-третьих, желчь активно влияет на процессы всасывания в тонкой кишке; в-четвертых, желчь способствует усилению отделения сока поджелудочной железы. Выделение желчи печенью происходит с первого дня жизни ребенка.

Всасывание и моторная функция кишечника. Из двенадцатиперстной кишки пищевые вещества поступают в тонкий кишечник. В тонком кишечнике продолжается переваривание питательных веществ, находящихся в химусе. В составе кишечного сока обнаружено свыше 20 ферментов, способных катализировать расщепление пищевых веществ. Однако основной функцией тонкого кишечника является всасывание. Ферментативная обработка пищи в толстой кишке весьма незначительна. В толстой кишке живут многочисленные бактерии. Одни из них расщепляют растительную клетчатку, так как в пищеварительных соках человека нет ферментов для ее переваривания. В толстой кишке синтезируются бактериями витамин К и некоторые витамины группы В. В желудке хорошо всасывается алкоголь, частично глюкоза, в толстом кишечнике вода, именно в тонком кишечнике, строение которого приспособлено к этой функции, осуществляются основные процессы всасывания пищевых веществ.

Белки всасываются в кровь в виде водных растворов  аминокислот. Углеводы всасываются в кровь в виде глюкозы. Жиры всасываются преимущественно в лимфу в виде жирных кислот и глицерина. В толстом кишечнике в основном всасывается вода.

У детей кишечник относительно длиннее, чем у взрослых. У взрослого человека длина кишечника превышает длину его тела в 4—5 раз, а у грудного ребенка — в 6 раз. Особенно интенсивно кишечник растет в длину от 1 до 3 лет в связи с переходом от молочной пищи к смешанной и от 10 до 15 лет.

Важней функцией кишечника является его моторика. За счет моторной деятельности кишечника происходит перемешивание пищевой кашицы и пищеварительными соками, ее передвижение по кишке, а также повышение внутрикишечного давления, что способствует всасыванию некоторых компонентов из полости кишки в кровь и лимфу.

Моторика осуществляется продольными и кольцевыми мышцами кишечника, сокращения которых вызывают два типа кишечных движений - сегментацию и перистальтику.

Значение обмена веществ и  энергии. Обмен веществ и энергии является одной из важнейших качественных особенностей живой природы и основной функцией организма. В процессе обмена веществ в организм поступают различные энергосодержащие питательные вещества и выделяются продукты распада. Из вновь поступивших химических веществ организм строит новые клетки и их составные части. Это пластические процессы, или процессы ассимиляции. Одновременно с этим в организме происходят процессы разрушения старых клеток и их составных частей, т. е. идут процессы диссимиляции, или распада. В результате этих процессов организм освобождается от «изношенных. негодных своих частей» и получает энергию, необходимую для его жизнедеятельности

Основные особенности обмена веществ и энергии у детей и подростков. Процессы ассимиляции и диссимиляции в здоровом взрослом организме находятся в динамическом равновесии. В детстве, когда происходит усиленный рост, преобладают процессы ассимиляции, в старости — процессы диссимиляции. Эта закономерность может нарушаться в результате различных заболеваний и действия других экстремальных факторов окружающей среды.

Питательные вещества, их значение и обмен в организме. В теле здорового взрослого человека средней массы (70 кг) содержится примерно (в кг): воды — 40—45; белков— 15—17; жиров — 7—10; минеральных солей — 2,5—3; углеводов — 0,5—0,8. Однако химический состав организма никогда не бывает постоянным. Непрерывные процессы синтеза и распада, происходящие в организме, требуют правильного и регулярного поступления материала,  необходимого для замещения уже отживших и  ненужных частиц организма. Этот «строительный материал» поступает в организм с пищей, в состав которой входят белки, жиры, углеводы, минеральные соли, вода и витамины.

Обмен белков. Белки составляют около 25 % от общей массы тела. Это самая сложная его составная часть. В состав простых белков входит всего четыре химических элемента:  кислород, водород, углерод и  азот.  В состав сложных белков  (например, белки мозга) входит также сера, фосфор, железо и др.

Белки представляют собой полимерные соединения, состоящие из мономеров — аминокислот. Молекулы белков могут содержать от 100 до 30000 мономеров, а их молекулярная масса колеблется от 17000 до 500000. Известно всего 20 аминокислот, из которых и построено все бесконечное многообразие белковых соединений, входящих в состав организма человека; причем белковый набор каждого человека является строго уникальным, специфичным. Специфичность белков определяется как количеством составляющих белковые молекулы аминокислот, таки их последовательностью.

В организме белки выполняют различные функции. Являясь основой ферментов, белки способны изменять скорость химических превращений в процессе обмена веществ, т. е. играют роль биологических катализаторов. Некоторые белки выполняют транспортную функцию. Например, гемоглобин, содержащийся в эритроцитах, участвует в переносе кровью кислорода. Все виды двигательных реакций в организме выполняются особыми сократительными белками — актином и миозином. Являясь основным материалом, из которого построены клетки нашего тела, белки выполняют строительную роль.

В нашем организме белок пищи под действием пищеварительных соков расщепляется на свои простые составные части — пептиды (промежуточные продукты) и аминокислоты, которые затем всасываются в кишечнике и поступают в кровь.

Из 20 аминокислот только 8 являются незаменимыми для человека. К ним относятся: триптофан лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин. Для растущего организма необходим также гистидин.

Отсутствие в пище любой из незаменимых аминокислот (остальные могут синтезироваться в организме) вызывает серьезные нарушения жизнедеятельности организма, особенно растущего организма детей и подростков. Хотя белки и составляют '/5 часть организма человека и около 2/з его плотного остатка, организм обладает лишь незначительными белковыми резервами. Вот почему белковое голодание приводит к задержке, а затем и к полному прекращению роста и физического развития. Ребенок становится вялым, наблюдается резкое похудание, обильные отеки, поносы, воспаление кожных покровов, малокровие, снижение сопротивляемости организма к инфекционным заболеваниям и т. д. В малоразвитых странах широко распространено заболевание, называемое «квашиор-кор» — результат питания преимущественно растительной пищей, лишенной многих незаменимых аминокислот.

Серьезные нарушения развития детей и подростков, вызванные белковым голоданием, объясняются тем, что белок, как было сказано выше, является основным пластическим материалом организма, из которого образуются различные клеточные структуры. Кроме того, белки входят в состав ферментов, гормонов, нуклеопротеинов, образуют гемоглобин и антитела крови.

Организм человека в среднем нуждается в получении в сутки примерно 1,1 —1,3 г белка на 1 кг массы тела. Для растущего организма потребности в белке значительно выше. На первом году постнатального развития ребенок должен получать более 4 г белка на 1 кг массы тела, в 2—3 года — 4 г, в 3—5 лет — 3,8 г и т. д.

Об интенсивности белкового обмена в организме судят по количеству поступившего и выделившегося из организма азота. Дело в том, что белок в отличие от других органических веществ организма человека содержит в своем составе азот. Поэтому, определяя так называемый азотистый баланс организма, мы определяем и обмен белков. Обычно 1 г азота содержится в 6,25 г белка. Если поступление азота больше, чем его выделение, то в организме наблюдается положительный азотистый баланс т. е. преобладание синтеза белка над его распадом. Обычно положительный азотистый баланс наблюдается у растущего организма. Если количество выведенного из организма азота больше количества введенного, то говорят об отрицательном азотистом балансе. Он обычно наблюдается при голодании, некоторых заболеваниях и на заключительных этапах старения организма.

Конечными продуктами белкового обмена являются азотсодержащие вещества — мочевина и мочевая кислота, образующиеся в организме в результате реакций дезаминирования, т. е. отделения от молекул аминокислот азота, и безазотистые вещества, из которых сначала образуется глюкоза, а затем конечные продукты ее обмена — диоксид углерода и вода.

Обмен жиров и углеводов. Эти органические вещества состоят из трех химических элементов: углерода, кислорода и водорода. Одинаковый химический состав жиров и углеводов дает возможность организму при излишке углеводов строить из них жиры, и наоборот, при необходимости из жиров в организме легко образуются углеводы.

Общее количество жира в организме человека в среднем составляет около 10—20%, а углеводов — 1 %. Большая часть жиров находится в жировой ткани и составляет резервный энергетический запас. Меньшая часть жиров идет на построение новых мембранных структур клеток и на замену старых. Некоторые клетки организма способны накапливать жир в огромных количествах, выполняя таким образом в организме роль тепловой и механической изоляции, т. е. защитные функции.

Количество запасного жира зависит от характера питания, количества пищи, конституционных особенностей, пола и возраста. Использование жиров как резервного вещества связано с его высокой энергетической ценностью — окисление 1 г жира в организме дает примерно 39 кДж, а окисление 1 г углеводов и белков — около 17 кДж.

В организме жир расщепляется на глицерин и жирные кислоты и всасывается в лимфу, после чего поступает в жировую ткань и клетки.

Принято считать, что в рационе здорового взрослого человека жиры должны составлять около 30 % общей калорийности пищи, т. е. человек должен съедать в сутки 80—100 г жиров. Необходимо использовать в пищу жиры и животного, и растительного происхождения, приблизительно в соотношении соответственно 2:1, так как некоторые составные компоненты растительных жиров не могут синтезироваться в организме. Это так называемые непредельные жирные кислоты: линолевая, линоленовая и арахидоновая. Недостаточное поступление этих жирных кислот в организм человека приводит к нарушению обмена веществ и развитию атеросклеротических процессов в сердечно-сосудистой системе.

Углеводы в организме расщепляются до простых сахаров — глюкозы, фруктозы, галактозы и т. д.— и всасываются в кровь. Содержание глюкозы в крови взрослого человека постоянно и равно в среднем 0,1 %. При повышении количества сахара в крови до 0,11—0,12 % глюкоза поступает из крови в печень и мышечные ткани, где откладывается в запас в виде животного крахмала — гликогена. При дальнейшем увеличении содержания сахара в крови до 0,17 % в его выведение из организма включаются почки, в моче появляется сахар. Это явление называют глюкозурией. В некоторых случаях возможно стойкое патологическое повышение концентрации углеводов в крови, сопровождающееся усиленным выведением сахара с мочой. Это заболевание, называемое сахарным диабетом (мочеизнурение), связано с нарушением внутрисекреторной функции поджелудочной железы.

При пониженном содержании сахара в крови  (менее 0,1 %) гликоген, имеющийся в печени и мышцах, расщепляется до глюкозы и поступает в кровь; образование глюкозы возможно также из белка и жира. Патологическое снижение глюкозы до 0,05 % опасно для жизни, наступает обморочное состояние (инсулиновый шок), которое также связано с нарушением функций поджелудочной железы.

Организм использует углеводы в основном как энергетический материал. Замечательное свойство Сахаров заключается в их быстрой утилизации в процессах жизнедеятельности, именно поэтому при интенсивном физическом труде в пище должно содержаться большое количество углеводов (до 800—900 г/день).

В обычных условиях в день требуется 400—500 г углеводов. Потребности в углеводах детей и подростков значительно меньше, особенно в первые годы жизни (см. табл. 21). В детском организме наблюдается более полноценное и быстрое усвоение углеводов и большая устойчивость к избытку сахара в крови. Например, появление сахара в моче у детей наблюдается при поступлении не менее 8—12 г глюкозы на 1 кг массы тела, а у взрослых — уже при поступлении 2,5—3 г.

Водно-солевой обмен. Для жизнедеятельности организма вода играет намного большую роль, чем остальные составные части пищи. Например, при нормальном поступлении воды в организм (суточная потребность человека в воде 2,3—2,7 л) и при полном голодании возможно сохранить жизнь до 60 дней. Без воды жизнь человека возможна лишь в течение нескольких дней. Дело в том, что вода в организме человека является одновременно строительным материалом, катализатором всех обменных процессов и терморегулятором тела.

Общее количество воды в организме зависит от возраста, пола и упитанности. В среднем в организме мужчины содержится около 61 % воды, в организме женщины — 51%.

Содержание воды в детском организме значительно выше, особенно на первых этапах развития. По данным эмбриологов, содержание воды в теле 4-месячного плода достигает 90 %, а у 7-месячного — 84 %. В организме новорожденного, по данным разных авторов, вода составляет от 70 до 80 %. В постнатальном онтогенезе содержание воды быстро падает. Большее содержание воды в организме детей, очевидно, связано с большей интенсивностью обменных реакций, связанных с их быстрым ростом и развитием. Общая потребность в воде детей и подростков возрастает по мере роста организма. Если годовалому ребенку необходимо в день примерно 800 мл воды, то в 4 года — 1000 мл, в 7—10 лет — 1350 мл, в 11 — 14 лет— 1500 мл.

Минеральные вещества — также необходимый компонент питания человека. Выше было отмечено, что по процентному содержанию в организме человека химические элементы делятся на макро- и микроэлементы.

Роль макро- и микроэлементов многообразна. Например, кальций и фосфор составляют основу нашего скелета, фосфор и сера входят в состав белков нашего мозга. Натрий и калий играют большую роль в деятельности нервной системы, обусловливая электрофизиологические процессы. Железо является необходимым компонентом гемоглобина крови.

Не менее важна и роль микроэлементов, многие из них участвуют в процессах кроветворения (медь, молибден, кобальт). Йод необходим для образования гормонов щитовидной железы. Его отсутствие в пище приводит к развитию заболевания, называемого эндемическим зобом. Фтор необходим для правильного формирования ткани зубов, особенно зубной эмали. Его излишек вреден, он приводит к заболеванию — флюорозу (хрупкость зубной эмали), недостаток вызывает разрушение зубов (кариес), особенно у детей.

В целом роль микроэлементов сводится к тому, что они являются тонкими регуляторами обменных процессов. Соединяясь с белками, многие микроэлементы служат материалом для построения ферментов, гормонов и витаминов.

Потребности взрослого и ребенка в минеральных веществах значительно отличаются, недостаток минеральных веществ в пище ребенка более быстро приводит к различным нарушениям обменных реакций детского организма и соответственно к нарушению его роста и развития.

Одна из необходимых составных частей пищи — витамины. Слово «витамин» переводится с латыни как вещество жизни. Витамины требуются для нашего организма в ничтожно малых количествах, но их отсутствие (авитаминоз) приводит организм к гибели, а недостаток в питании или нарушение процессов их усвоения — к развитию различных заболеваний, называемых гиповитаминозами.

Известно около 30 витаминов, влияющих на различные стороны обмена веществ. Влияние витаминов на течение биохимических процессов связанно с тем, что многие витамины являются необходимой составной частью ферментов. Следовательно, отсутствие витаминов вызывает нарушение синтеза ферментов и соответственно нарушение обмена веществ.

Все витамины делятся на две группы: водорастворимые (В, С, РР и др.) и жирорастворимые (А, D, К и др.).

Растущий организм детей и подростков обладает особенно высокой чувствительностью к недостатку витаминов в пище. Наиболее распостраненным гиповитаминозом среди детей является заболевание, называемое рахитом. оно развивается при недостатке в детском питании витамина D и сопровождается нарушением формирования скелета. Встречается рахит у детей до 5 лет.

Следует также отметить, что поступление в организм избыточного количества витаминов может вызвать серьезные нарушения его функциональной деятельности и даже привести к развитию заболеваний, получивших название гипервитаминозы. Последние стали появляться в связи с изучением химической структуры витаминов и организацией их промышленного производства, поэтому не следует злоупотреблять препаратами витаминов, которые продаются в аптеках, а включать их в питание необходимо только по рекомендации врача.

Энергетический обмен у детей и подростков. Обмен веществ в организме тесно связан с превращением энергии, поэтому о нем можно судить, измеряя общее количество тепла, образующегося в организме (тепловая энергия является конечным продуктом всех энергетических превращений в организме).

Таким образом, вся энергия, освобождающаяся в организме, может быть определена и выражена в единицах тепла—джоулях (Дж) и килоджоулях (кДж). Определить количество продуцируемой в организме энергии можно методами прямой и непрямой калориметрии.

Прямая калориметрия производится с помощью специальных калориметрических камер. Такая камера имеет двойные стенки (принцип термоса), между которыми проходят трубы с протекающей водой. Если поместить человека внутрь камеры, то тепло, выделяемое организмом, нагревает воду, протекающую через камеру. Зная температуpy воды, поступающей в камеру, и температуру воды, прошедшей камеру, можно определить количество тепла, продуцируемое организмом человека за единицу времени. Однако сооружения подобного рода сложны и дороги, поэтому очень широко распространен метод непрямой калориметрии. Он основан на том, что источником энергии и организме служат окислительные процессы, при которых потребляется кислород и выделяется диоксид углерода. Учитывая количество поступающего кислорода и выделяющегося диоксида углерода, можно рассчитать энергообмен организма человека. Есть еще один метод определения тепловой энергии, образующейся в организме. Он основан на законе сохранения энергии. Этот метод учитывает энергитическую ценность пищевых продуктов. (1 г жиров = 39,06 кДж, 1 г белков и углеводов = 17,22 кДж), а также количество и качественный состав пищи. Имея эти данные, можно легко рассчитать количество поступившей и образующейся в организме энергии.

Одним из важнейших функциональных показателей интенсивности обменных процессов в организме является величина основного обмена, под которой понимается уровень обменных реакций при комнатной температуре и в потом функциональном покое, т.е. при отсутствии мышечной нагрузки, интенсивной умственной деятельности и низком уровне вегетативных процессов. Величина основного обмена  зависит от возраста,  пола  и  упитанности.

В среднем величина основного обмена у мужчин составляет в сутки 7140—7560 кДж, а у женщин 6426—6804 кДж. Интенсивность обменных реакций у детей в пересчете на 1 кг массы тела или 1 м 2 его поверхности значительно выше, чем у взрослых, хотя абсолютные величины меньше.

В обычных условиях жизни на интенсивность обмена веществ оказывают влияние различные факторы, и прежде всего мышечная деятельность. Поэтому уровень обмена веществ в естественных условиях — общий обмен — значительно превышает основной.

Питание детей и подростков. Зная энергетические затраты организма, легко составить оптимальный пищевой рацион так, чтобы количество энергии, поступающее с пищей, полностью покрывало энергетические расходы организма.

Для детей и подростков особенно важным является состав пищи, так как детский организм для нормального развития и роста нуждается в определенном количестве (белков, жиров, углеводов, минеральных солей, воды и витаминов.

Важно помнить, что правильно организованное питание является обязательным условием нормальной и здоровой жизни, а для детей и подростков нормальное питание — необходимое условие их физического и психического развития. Пренебрежение едой так же вредно, как и злоупотребление. Дать детям первичные рекомендации к организации правильного питания — долг каждого учителя и воспитателя и необходимый элемент гигиенического воспитания школьников.

 


ВОЗРАСТНЫЕ ОСОБЕННОСТИ СИСТЕМЫ КРОВИ И КРОВООБРАЩЕНИЯ

 

Функции крови:

- транспортная функция;

- выделительная функция;

- терморегуляторная функция;

- защитная функция;

- дыхательная функция.

Количество и состав крови. Кровь — это жидкая соединительная ткань организма. В ее состав входят форменные элементы (клетки крови) и плазма (жидкая часть крови).

 

Форменные элементы крови

-    красные кровяные тельца (эритроциты)

-    белые кровяные тельца (лейкоциты)

кровяные пластинки (тромбоциты).

Клетки крови составляют 55—60 % ее объема, 40—45 % объема крови составляет плазма.

В состав плазмы входят вода (около 90 %), органические вещества (белки, жиры, углеводы и т. д.) и неорганические вещества (минеральные соли): белки составляют 7—8% и лишь около 2 % приходится на все остальные органические и неорганические вещества.

Общее количество крови в организме взрослого человека равно 4,5—6 л, т. е. около 6—8 % от общей массы тела.

Депо крови. Эту функцию выполняют некоторые органы: селезенка, печень, легкие, кожа (подкожные слои), в которых резервируется до  50 %   крови.   Потеря  организмом  около  50 %   крови приводит к его гибели.

Важнейшие физико-химические свойства крови:

- осмотическое давление плазмы;

- активная реакция крови.

Под осмотическим давлением плазмы понимают давление, которое создают растворенные в ней органические и неорганические вещества. В основном величина осмотического давления плазмы зависит от количества минеральных веществ: чем больше их концентрация в плазме, тем больше ее осмотическое давление.

Активная реакция крови характеризуется концентрацией в крови ионов водорода и обозначается рН. Постоянство рН крови имеет важное значение для протекания всех ферментативных реакций и является одной из наиболее стабильных величин внутренней среды организма. В норме рН крови составляет около 7,36, это слабощелочная среда.

Большое значение для сохранения постоянства рН крови имеют буферные вещества крови: белковые компоненты, некоторые неорганические соединения, которые обладают способностью связывать поступающие в кровь продукты обмена веществ с кислыми или щелочными свойствами.

Форменные элементы крови. 

Эритроциты. Их количество составляет в крови мужчин 4,5— 5 млн/мм3, женщин — 4—4,5 млн/мм3. Это безъядерные клетки диаметром около 7—8 мкм и толщиной около 2 мкм. Важное значение гемоглобин — специальный белок, содержащийся в эритроцитах и обусловливающий красный цвет крови. Он легко вступает в химическую связь с кислородом, а затем отдаст его тканям, т. е. восстанавливается, к принимает участие в доставке диоксида углерода в легкие. Содержание гемоглобина в крови относительно постоянно и составляет 13—15 % (13—15 г/!00 г крови). Соединение гемоглобина с кислородом называется оксигемоглобином, с СО2 – карбогемолобином, СО-карбоксигемоглобином.

Снижение числа эритроцитов ниже 3 млн. и количества гемоглобина ниже 60% свидетельствует о наличии анемического состояния.

Снижение осмотической устойчивости эритроцитов приводит к их разрушению и выходу в плазму крови гемоглобина, это явление называется  гемолизом.   В  результате  эритроцит  не  выполняет своих функций, что отрицательно сказывается на всех процессах жизнедеятельности организма.

Скорость оседания эритроцитов (СОЭ) можно наблюдать, если набрать кровь в узкую стеклянную трубочку и оставить ее стоять, предупредив свертывание крови. Через час можно обнаружить расслоение крови: форменные элементы будут оседать, а сверху будет оставаться желтоватый слой плазмы, по величине которого судят о СОЭ. В норме у женщин СОЭ колеблется в пределах 2—15 мм/ч, у мужчин — 1—109 мм/ч.

Лейкоциты — это ядерные клетки крови, в 1 мм 3 крови их содержится 6000—8000. Лейкоциты обеспечивают устойчивость организма к инфекционным заболеваниям.

Виды лейкоцитов:

1) зернистые лейкоциты, или гранулоциты (нейтрофилы, эозинофилы и базофилы);

2) незернистые лейкоциты, или агранулоциты (лимфоциты);

3) моноциты.

В крови поддерживается относительно постоянное количественное соотношение всех лейкоцитов. Это соотношение выражают в процентах и называют лейкоцитарной формулой Количество лейкоцитов и их соотношение может изменяться в результате различных воздействий на организм; например при заболеваниях, тяжелой мышечной работе, приеме пищи и т. д.

Тромбоциты -это образования овальной или округлой формы диаметром всего 2—5 мкм. Число тромбоцитов в 1 мм 3 крови колеблется от 300 до 400 тыс. Они имеют важное значение в свертывании крови .

Возрастные изменения иммунитета. Плод в материнском организме еще не содержит антигенов, он является иммунологически толерантным. В его организме не образуется никаких антител, и благодаря плаценте плод надежно защищен от попадания антигенов с кровью матери. Переход от иммунологической толерантности к иммунологической реактивности происходит с момента рождения ребенка. С этого времени начинает функционировать его собственный иммунологический аппарат, который вступает в действие на второй неделе после рождения. Образование собственных антител в организме ребенка еще незначительно, и важное значение в иммунологических реакциях в течение первого года жизни имеют антитела, получаемые с молоком матери. Интенсивное развитие иммунологического аппарата идет со второго года примерно до 10 лет, затем с 10 до 20 лет интенсивность иммунной защиты незначительно ослабевает. С 20 до 40 лет уровень иммунных реакций стабилизируется и после 40 лет начинает постепенно снижаться. Важное значение в формировании достаточной устойчивости организма детей и подростков к заболеваниям имеют профилактические прививки.

Группы крови. В эритроцитах содержится антигены или агглютиногены А и В, вещества типа антител или агглютинины αиβ— в плазме крови. В случае совмещения агглютиногена А с агглютинином α или агглютиногена В агглютинином β происходит склеивание эритроцитов - агглютинация.

Комбинация этих веществ в крови людей существует лишь в четырех вариантах:

1. В эритроцитах отсутствуют агглютиногены, а в плазме содержатся только агглютинины αиβ (I группа крови;
люди с этой группой составляют около 40
%) - универсальные доноры.

2.        Эритроциты содержат агглютиноген А, а в плазме содержится агглютинин β (II группа крови; люди с такой группой составляют около 39 %).

3.        Эритроциты содержат агглютиноген В. а в плазме находится агглютинин α (III группа; люди с такой группой составляют 15 %).

4. Эритроциты содержат агглютиногены А и В, а в плазме полностью отсутствуют агглютинины (IV группа; люди с такой группой составляют 6 %) – универсальные реципиенты.

Возрастные особенности крови у детей и подростков. Количественные и качественные возрастные отличия крови ярко выражены лишь в первые годы постнатального развития. Обычно у детей старше одного года многие гематологические показатели приближаются к значениям, характерным для взрослого организма. Позднее всего в подростковом возрасте устанавливается соотношение лейкоцитов, соответствующее взрослому человеку. До этого момента и особенно до 5—6 лет в крови детей содержится меньше нейтрофилов, чем у взрослых. Возможно, с этим связана более высокая восприимчивость детей дошкольников к инфекционным заболеваниям. Осмотическая устойчивость эритроцитов у дошкольников выше, чем у взрослых, а у подростков даже несколько ниже, что связано с гормональными перестройками, происходящими в их организме.

Основные показатели крови у людей разного возраста

Показтель

Возраст и пол

новорожденные

Грудные дети

Дети старше 1 года

мужчины

женщины

Гемоглобин, г %

17-24,7

11,0-11,9

12,6-15,6

13,5-16

12,5-14,5

Эритроциты, млн

4,5-7,5

3,5-4,6

4,3-5

5

4

СОЭ, мм/ч

2-3

3-5

4-10

3-9

7-12

Лейкоциты, тыс

10-30

10-11

6-8

6-8

6-8

Тромбоциты, тыс

200-250

200-300

200-300

200-300

200-300

 

Общая схема строения системы кровообращения. Сердце и сосуды образуют сердечно-сосудистую систему, или систему кровообращения.

Сердце — центральное звено системы кровообращения. Сердце человека, составляя всего 1/200 часть от массы тела (около 300 г), потребляет 1/10 часть циркулирующей по организму крови. Кровеносные сосуды, питающие сердечную мышцу, называются венечными артериями, и они вместе с венами сердца образуют коронарные сосуды — собственную кровеносную систему сердца. Сердце человека имеет конусовидную форму и представляет собой полый мышечный орган, разделенный специальной перегородкой на левую и правую части, в которых различают сообщающиеся между собой предсердие и желудочек. Масса сердца взрослого человека колеблется у мужчин в среднем около 300 г, у женщин — около 220 г, длина его около 12—13 см, а наибольшая ширина — 10— 11 см.

Кровь из левого желудочка выталкивается в самый крупный сосуд нашего организма — аорту, а затем попадает в более мелкие сосуды, доставляющие кровь в большинство органов. Эти сосуды, проводящие кровь от сердца к тканям, называются артериями. Артерии, разветвляясь на более мелкие сосуды, обильно снабжают кровью каждый орган. Самый микроскопический и многочисленный кровеносный сосуд — капилляр, его диаметр всего около 8 мкм, а длина — 0,3—0,7 мм. Благодаря капиллярам образуется громадная площадь соприкосновения крови с тканевой жидкостью, что способствует обменным процессам. Пройдя капилляры, кровь поступает в более крупные кровеносные сосуды, которые вновь доставляют ее к сердцу. Эти сосуды называют венами. Таким образом, кровь циркулирует по замкнутому кругу, берущему начало в левом желудочке и кончающемуся в правом предсердии. Это большой круг кровообращения.

Из правого предсердия кровь попадает в правый желудочек сердца, а затем она выталкивается в легочную артерию. Далее кровь попадает по артериальным легочным сосудам в легочные капилляры, где обогащается кислородом. Из легочных капилляров кровь поступает по мелким венам в крупную легочную вену и далее в левое предсердие. Это малый круг кровообращения.

Деятельность сердца. Структурную основу сердца составляет сердечная мышца — миокард, образованная особыми поперечнополосатыми мышечными клетками. Важнейшими свойствами сердечной мышцы являются возбудимость, сократимость и проводимость.

В деятельности сердца легко различаются три фазы.

1 фаза связана с сокращением предсердий, она протекает в течение 0,1с;

2 фаза - в течение 0,33 с сокращаются желудочки сердца.

Фазу сокращения отделов сердца называют систолой сердца. Вслед за систолой предсердий и желудочков наступает их ритмическое и последовательное расслабление, называемое диастолой сердца.

3 фазу совместного, одновременного расслабления предсердий и желудочков называют паузой сердца;

она продолжается в среднем около 0,4 с. В течение диастолы и паузы сердечной мышце предоставляется «отдых», вслед за которым начинается новый цикл деятельности. В целом сердечный цикл длится около 0,8 с.

В покое в течение 1 мин сердце успевает сократиться около 60—80 раз, при этом каждый желудочек во время одного сокращения выталкивает 60—80 мл крови. Это количество крови называют систолическим, или ударным объемом крови. Количество крови, выталкиваемое каждым желудочком за I мин, называют минутным объемом крови. При систоле желудочков в них остается часть крови. Это количество крови называют резервным объемом. Количество сердечных сокращений за 1 мин называют частотой сердечных сокращений (ЧСС).

ЧСС (пульс), систолический, минутный и резервный объемы крови являются важнейшими функциональными показателями деятельности сердца. Величина этих показателей зависит от половых, возрастных и индивидуальных особенностей человека.

Кровяное давление. Давление крови в сосудах определяется в основном двумя факторами: интенсивностью сердечных сокращений и сопротивлением периферических сосудов. В различных отделах системы кровообращения кровяное давление имеет различную величину. Наибольшая величина кровяного давления отмечается в аорте, наименьшая — в капиллярах. Кровяное давление зависит также от фаз сердечной деятельности. При систоле сердца оно максимально, при диастоле — минимально. Систолическое давление в левой плечевой артерии составляет 110—125 мм рт. ст., диастолическое — 60—80 мм рт. ст. У мужчин кровяное давление обычно выше, чем у женщин. Имеются также существенные возрастные особенности величины кровяного давления у детей и подростков.

Нейрогуморальная регуляция деятельности сосудов и сердца. Деятельность сердца и сосудов регулируется вегетативной нервной системой, центры которой находятся в продолговатом мозге. Отсюда к сердцу направляются симпатический нерв, учащающий и усиливающий сердечные сокращения,  и  парасимпатический(блуждающий) нерв, замедляющий и ослабляющий сердечные сокращения. Нервный центр, управляющий деятельностью сосудов, также расположен в продолговатом мозге, его называют сосудодвигательным центром. Нервные импульсы из сосудодвигательного центра поступают к сосудам по симпатическим нервам. Возбуждение сосудодвигательного центра сопровождается сужением сосудов, а торможение — расширением.

Механизм нервной регуляции сердечной деятельности рефлекторный. Раздражение рецепторов в любой точке тела вызывает их возбуждение, нервные импульсы поступают в структуры головного мозга, а затем через парасимпатические или симпатические нервы изменяется деятельность сердца. Существуют также рецепторы, расположенные в сосудистой системе, обладающие специфической чувствительностью к изменению кровяного давления и химического состава крови. Эти специальные рецепторные зоны имеют чрезвычайно важное значение в процессах саморегуляции системы кровообращения.

Высший нервный контроль за деятельностью системы кровообращения осуществляется корой головного мозга.

Деятельность сердца и сосудов может изменяться под влиянием разнообразных химических веществ. Особенно значительное влияние оказывают гормоны и некоторые другие биологически активные вещества. Ведущую роль среди них играет гормон надпочечников — адреналин, действие которого на сердце и сосуды аналогично симпатическому нерву.

Лимфообращение. Питательные вещества и кислород крови в капиллярах вместе с жидкой частью крови переходят в межклеточное пространство и образуют межтканевую жидкость, в которую выделяются клетками также продукты обмена. Именно межтканевая жидкость и является связующим звеном между клетками и кровью. Обратное поступление межтканевой жидкости в кровеносное русло осуществляется с помощью специальных сосудов, образующих в совокупности систему лимфообращения. Находящуюся в лимфатических сосудах жидкость называют лимфой. По своему составу лимфа близка к плазме крови. Общий объем лимфы составляет в организме человека около 2 л.

Лимфатическая система является компонентом иммунного аппарата. Здесь находятся своеобразные биологические «фильтры» — лимфатические узлы, задерживающие попадание в организм чужеродных частиц, в том числе и патогенных микроорганизмов. В лимфатических узлах образуются также некоторые формы лейкоцитов.

Возрастные особенности системы кровообращения у детей и подростков. Формирование сердца у эмбриона начинается со 2-й недели пренатального развития, а его развитие заканчивается уже к концу 3-й недели. Кровообращение плода имеет свои особенности, связанные прежде всего с тем, что до рождения кислород поступает в организм плода через плаценту и так называемую пупочную вену. Циркуляция в организме плода смешанной крови, его связь через плаценту с системой кровообращения матери и наличие боталлова протока являются основными особенностями кровообращения плода.

У новорожденного ребенка связь с материнским организмом прекращается, и его собственная система кровообращения берет на себя все необходимые функции. У детей относительная масса сердца и общий просвет сосудов больше, чем у взрослых, что в значительной степени облегчает процессы кровообращения. Рост сердца находится в тесной связи с общим ростом тела. Наиболее интенсивный рост сердца наблюдается в первые годы развития и в конце подросткового периода. Функциональные различия в сердечно-сосудистой системе детей и подростков сохраняются до 12 лет. Частота сердечного ритма у детей больше (ЧСС у новорожденных 120-168 ударов в 1 мин), чем у взрослых, что связано с преобладанием у детей тонуса симпатических центров. В процессе постнатального развития тоническое влияние на сердце блуждающего нерва постепенно усиливается. Заметное влияние блуждающий нерв начинает оказывать с 2—4 лет, а в младшем школьном возрасте степень его влияния приближается к уровню взрослого. Задержка в формировании тонического влияния блуждающего нерва на сердечную деятельность может свидетельствовать о задержке (ретардации) физического развития ребенка. ЧСС у детей более подвержена влиянию внешних воздействий: физических упражнений, эмоционального напряжения и т. д. Кровяное давление у детей ниже, чем у взрослых, а скорость кровообращения выше (у новорожденного скорость кровотока составляет 12 с, у 3-летних — 15 с, у 14-летних — 18,5 с). Ударный объем крови у детей значительно меньше, чем у взрослых. У новорожденного он составляет всего 2,5 см3, за развития он увеличивается в 4 раз, затем темпы его увеличения снижаются, но он продолжает расти до 15—16 лет, лишь на этом этапе ударный объем приближается к уровню взрослого. С возрастом увеличиваются минутный и резервный объем крови, что обеспечивает сердцу возрастающие адаптационные возможности к физическим нагрузкам.


СИСТЕМА ОРГАНОВ ДЫХАНИЯ, И ЕЕ ВОЗРАСТНЫЕ ОСОБЕННОСТИ

Значение дыхания. Дыхание – физиологическая функция, обеспечивающая газообмен между окружающей средой и организмом в соответствии с его метаболическими потребностями.

В понятие дыхание включают следующие процессы:

1)      Внешнее дыхание - обмен газов между окружающей средой и легкими;

2)      Легочное дыхание - обмен газов в легких между альвеолами и кровью;

3)      Транспорт газов кровью, перенос кислорода от легких к тканям и углекислого газа из тканей в легкие;

4)      Обмен газов между кровью и межтканевой жидкостью;

5)      Внутреннее или тканевое дыхание - биологические процессы, происходящие в митохондриях.

Общая схема строения органов дыхания и возрастные особенности. Дыхательная система включает:

1 дыхательные пути, пути к которым относятся полость носа, носоглотка, гортань, трахея, бронхи;

2 легкие - состоящие из бронхиол, альвеолярных мешочков и богато снабженными сосудистыми разветвлениями;

3 костно-мышечную систему, обеспечивающую дыхательные движения: ребра, межреберные и другие вспомогательные мышцы, диафрагма. Органы дыхания объединяются в единую систему органов.

Дыхательный путь начинается носовой полостью. Здесь вдыхаемый воздух согревается, очищается от пыли, увлажняется. К моменту рождения носовая полость ребенка недоразвита, она отличается узкими носовыми отверстиями, отсутствием придаточных пазух. Окончательное формирование придаточных пазух происходит в подростковом возрасте. Объем носовой полости с возрастом увеличивается в 2,5раза. Структурные особенности  носовой полости детей раннего возраста затрудняют носовое дыхание, дети часто дышат с открытым ртом, что приводит к подверженности простудным заболеваниям.

Из полости носа воздух попадает в носоглотку – верхнюю часть глотки. В глотку открываются полость носа, гортань, слуховые трубы. Глотка ребенка короткая, широкая. Эта особенность приводят к тому, что заболевания верхних дыхательных путей у детей часто осложняются воспалением среднего уха.

Следующий отдел дыхательных путей – гортань. Гортань у детей короткий, узкий и располагаются выше, чем у взрослых. Интенсивно гортань растет на 1-3м годах жизни в период полового созревания. В период полового созревания появляются половые различия в строении гортани. У мальчиков образуется кадык, удлиняются голосовые связки, гортань становится шире и длиннее.

От нижнего края гортани отходит трахея. Ее длина увеличивается в соответствии с ростом туловища, интенсивный рост отмечено в возрасте 14-16 лет. Диаметр трахеи увеличивается  соответственно увеличению объема грудной клетки. Трахея разветвляется на 2 бронха. Наибольший рост бронхов происходит в первый год жизни и в период полового созревания.

Легкие  у детей растут за счет увеличения объема альвеол. У новорожденного диаметр альвеолы 0,07мм, у взрослого – 0,2 мм. До 3 лет происходит усиленный рост легких и дифференцировка их отдельных элементов. число альвеол к 8 годам достигает числа их у взрослого человека. альвеолы интенсивно растут после 12 лет. Объем легких к 12 годам увеличивается в 10 раз, а к концу периода полового созревания – в 20 раз.

Особенности развития костно-мышечного аппарата дыхательной системы. У детей раннего возраста ребра имеют малый изгиб и занимают горизонтальное положение. Верхние ребра и плечевой пояс расположены высоко, межреберные мышцы слабые. В связи с этим у новорожденных диафрагмальное дыхание. Этот тип дыхания сохраняется до второй половины первого года жизни. Постепенно дыхание грудных детей становится грудно-брюшным, с преобладанием диафрагмального. В возрасте от 3 до 7 лет в связи с развитием плечевого пояса все более начинает преобладать грудной тип дыхания, и к 7 годам он становится выраженным. В 7-8 лет выявляются половые различия в типе дыхания: у мальчиков становится преобладающим брюшной тип дыхания,  у девочек – грудной. Заканчивается половая дифференцировка дыхания к 17-18 годам.

Частота дыхания и минутный объем дыхания. Частота дыхательных движений в покое у взрослого человека колеблется от 14 до 20 в минуту. За один вдох при спокойном дыхании вдыхается 500 мл воздуха. Дыхание новорожденного частое поверхностное. У детей первого года жизни частота дыхательных движений в минуту 50-60. У детей 1-2 лет частота дыхания 35-40, у 2-4 летних – 25-35 и у 4-6-летних – 23-26 циклов в минуту. У детей школьного возраста 18-20 раз в минуту. Объем вдыхаемого воздуха у ребенка в 1 месяц жизни 30мл, в 1 год – 70мл, в 6 лет – 156мл, в 10 лет – 239мл, в 14 лет – 300мл. Количество воздуха, вдыхаемого и выдыхаемого в течение 1 мин, называют минутным объемом дыхания (МОД). В покое МОД колеблется от 7 до 10 л.  У новорожденного МОД 650-700мл воздуха, к концу первого года жизни 2600-2700мл, к 6 годам-3500мл, у 10летнего ребенка-4300мл, у 14 летнего - 4900мл. При физической работе МОД увеличивается до 150—180 л.

Важной характеристикой функционирования дыхательной системы является жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, который человек может выдохнуть после глубокого вдоха. ЖЕЛ зависит от длины тела, степени развития грудной клетки и дыхательных мышц, пола. ЖЕЛ больше у мужчин, чем у женщин. У мужчин ЖЕЛ колеблется от 3200 до 7200 мл, у женщин— от 2500 до 5000 мл. ЖЕЛ определяют с помощью специальных приборов — спирометров.

Даже при максимальном выдохе в легких всегда остается еще около 1500 мл воздуха. Этот объем воздуха называют остаточным. ЖЕЛ и остаточный объем легких в сумме составляют общую емкость легких.

Средняя величина ЖЕЛ у детей и подростков, мл

Пол детей

Возраст, годы

6

7

10

12

15

17

Мальчики

1200

1400

1630

1975

2600

3520

Девочки

1100

1200

1460

1905

2530

2760

 

Нервно-гуморальная регуляция дыхания. Группа нейронов, ответственная за осуществление дыхательного цикла, называется дыхательным центром. Дыхательный нервный центр находится в продолговатом мозге и состоит из двух тесно взаимосвязанных отделов, ответственных за протекание вдоха и выдоха.

Возбудимость нервных клеток дыхательного центра определяется концентрацией в крови СО2 (гуморальный фактор). При повышении в крови концентрации углекислого газа степень возбуждения нервных клеток дыхательного центра возрастает, что приводит к интенсификации дыхания. Механизм действия СО2 на нервные клетки дыхательного центра осуществляется двумя путями:

1) При непосредственном действии крови, омывающей нервные клетки, и рефлекторным путем, при действии СО2 на специальные рецепторы, расположенные в кровеносном русле (хеморецепторы).

2) При вдохе происходит растяжение легких и раздражение специальных рецепторов (барорецепторы), расположенных в их стенках, а также в межреберных мышцах и диафрагме.

Центростремительные импульсы поступают в продолговатый мозг, происходит торможение вдоха и начинается выдох. Как только растяжение легких прекращается, прекращается импульсация в дыхательный центр; возбудимость нервных клеток возрастает и опять включается механизм вдоха.

Участие коры головного мозга в регуляции дыхания доказывается возможностью произвольной задержки дыхания или его интенсификации. Способность к произвольной регуляции дыхания зависит от тренированности организма. Например, у спортсменов возможно произвольное усиление дыхания и увеличение его МОД до 200 л, в то время как у людей, не занимающихся спортом,— только до 70—80 л. Примером участия КГМ в регуляции дыхания является также изменение дыхания у спортсменов на старте или изменение дыхания у студентов, сдающих экзамены.

 


ВОЗРАСТНЫЕ ОСОБЕННОСТИ ОРГАНОВ ВЫДЕЛЕНИЯ

Значения выделения. Органы выделения играют важную роль в сохранении постоянства внутренней среды, они удаляют из организма продукты обмена, которые не могут быть использованы, избыток воды и солей.

В осуществлении процессов выделения участвуют легкие, кишечник, кожа и почки:

- Легкие удаляют из организма углекислый газ, пары воды, летучие вещества.

- Из кишечника удаляются с калом соли тяжелых металлов, избыток невсосавшихся пищевых веществ.

- Потовые железы кожи выделяют воду, соли, органические вещества, их усиленная деятельность наблюдается при напряженной мышечной работе и повышении температуры окружающей среды.

Основная роль в выделительных процессах принадлежит почкам, которые выводят из организма воду, соли, аммиак, мочевину, мочевую кислоту, восстанавливая постоянство осмотических свойств крови. Через почки удаляются некоторые ядовитые вещества, образующиеся в организме или принятые в виде лекарств. Почки поддерживают определенную постоянную реакцию крови. При накоплении в крови кислых или щелочных продуктов обмена через почки увеличивается выделение излишков соответствующих солей. В поддержании постоянства реакции крови очень важную роль играет способность почек синтезировать аммиак, который связывает кислые продукты.

СТРОЕНИЕ И  ФУНКЦИЯ   ПОЧЕК

Строение почек. Почки имеют форму боба. Они красно-бурого цвета, массой около 120 г.

На вогнутом, внутреннем крае почки имеется глубокая вырезка. Это ворота почки. Сюда входит почечная артерия, а выходит почечная вена и мочеточник. Почки получают крови больше, чем любой другой орган, в них происходит образование мочи из веществ, приносимых кровью. Структурно-функциональной единицей почки является тельце почки— нефрон, в каждой почке около 1 млн. нефронов. Нефрон состоит из двух основных частей: кровеносных сосудов и почечного канальца.

Общая длина канальцев одного тельца почки достигает 35—50 мм. В почках имеется примерно 130 км трубочек, по которым проходит жидкость. Ежесуточно в почках фильтруется около 170 л жидкости, которая концентрируется примерно в 1,5 л мочи и удаляется из организма. 

 Возрастные особенности функции почек. Мочи у детей отделяется сравнительно больше, чем у взрослых, а мочеиспускание происходит чаще за счет интенсивного водного обмена и относительно большого количества воды и углеводов в рационе питания ребенка.

Только в первые 3—4 дня количество отделяющейся мочи у детей невелико. У месячного ребенка мочи отделяется в сутки 350—380 мл, к концу первого года жизни — 750 мл, в 4—5 лет — около 1л, в 10 лет—1,5 л, а в период полового созревания — до 2 л.

У новорожденных реакция мочи резкокислая, с возрастом она становится слабокислой. Реакция мочи может меняться в зависимости от характера получаемой ребенком пищи.

У новорожденных детей повышена проницаемость почечного эпителия, отчего в моче почти всегда обнаруживается белок.

Мочеиспускание и его механизм. Испускание мочи — процесс рефлекторный. Поступающая в мочевой пузырь моча вызывает повышение давления в нем, что раздражает рецепторы, находящиеся в стенке пузыря. Возникает возбуждение, доходящее до центра мочеиспускания в нижней части спинного мозга. Отсюда импульсы поступают к мускулатуре пузыря, заставляя ее сокращаться; сфинктер при этом расслабляется, и моча поступает из пузыря в мочеиспускательный канал. Это непроизвольное испускание мочи. Оно имеет место у грудных детей.

Старшие дети, как и взрослые, могут произвольно задерживать и вызывать мочеиспускание. Это связано с установлением корковой, условнорефлекторной регуляции мочеиспускания. Обычно к двухлетнему возрасту у детей сформированы условнорефлекторные механизмы задержки мочеиспускания не только днем, но и ночью. Однако в возрасте 5—10 лет у детей, иногда до полового созревания, встречается ночное непроизвольное недержание мочи — энурез.

СТРОЕНИЕ И  ФУНКЦИЯ  КОЖИ

Особенности строения кожи. Кожа, покрывающая тело человека, составляет 5%  массы тела, ее площадь у взрослого человека   1,5—2 м2. Кожа состоит из эпителиальной и соединительной тканей, содержащих осязательные тельца, нервные волокна, кровеносные сосуды, потовые и сальные железы.

Функции кожи:

1) гомеостатическая функция - она  участвует  в  поддержании  постоянства внутренней среды как орган выделения.

2) рецепторная функция - содержащиеся в ней осязательные тельца являются рецепторами кожного анализатора и играют важную роль в обеспечении контактов организма с внешней средой.

3) защитная функция - она защищает организм от механических воздействий. Постоянное обновление  поверхностного   слоя   кожи   способствует   очищению   поверхности тела.

4) терморегуляционная функция - через кожу осуществляется  80%   теплоотдачи,   которая   происходит   за   счет испарения пота и теплоизлучения. В коже содержатся терморецепторы, способствующие рефлекторному поддержанию температуры  тела.

5) дыхательная функция - в  нормальных  условиях  при температуре   +18- -20°С  через кожные покровы в организм поступает 1,5% кислорода. При интенсивной физической работе поступление кислорода через кожу может увеличиться в 4—5 раз.

6) выделительная функция кожи осуществляется потовыми железами. Потовые железы расположены в подкожной соединительнотканной клетчатке. Количество потовых желез колеблется от 2 до 3,5 млн. С потом выделяется из организма значительное количество воды и солей, а также мочевина. Суточное количество пота у взрослого человека в покое — 400—600 мл. В сутки с потом выделяется около 40 г поваренной соли и 10 г азота.

 Возрастные особенности строения и функции кожи. Одной из основных особенностей кожи детей и подростков является то, что поверхность ее у них относительно больше, чем у взрослых. Чем моложе ребенок, тем большая поверхность кожи приходится у него на 1 кг массы тела. Абсолютная же поверхность кожи у детей меньше, чем у взрослых, и увеличивается с возрастом. На 1 кг массы тела приходится следующая площадь поверхности кожи: у новорожденного — 704 см2, у ребенка 1 года — 528, у дошкольника 6 лет — 456, у школьника 10 лет — 423, у подростка 15 лет — 378 и у взрослых — 221 см2.

В течение жизни общее количество потовых желез не меняется, увеличиваются их размеры и секреторная функция. Неизменность числа потовых желез с возрастом определяет их большую плотность в детском возрасте. Количество потовых желез на единицу поверхности тела у детей в 10 раз больше, чем у взрослых. Морфологическое развитие потовых желез в основном завершается к 7 годам.

Потоотделение начинается на 4-й неделе жизни. Особенно заметное увеличение числа функционирующих потовых желез отмечено в первые 2 года. Интенсивность потоотделения на ладонях достигает максимума в 5—7 лет, затем постепенно снижается. Теплоотдача через испарение повышается в течение первого года с 260 ккал с 1 м2 поверхности до 570 ккал с 1 м2.

Изменяется с возрастом и секреторная деятельность сальных желез. Активность этих желез достигает высокого уровня в период, непосредственно предшествующий рождению ребенка. Они создают как бы «смазку», облегчающую прохождение ребенка по родовым путям. После рождения секреция сальных желез затухает, ее усиление вновь происходит в период полового созревания и связано с нейроэндокринными изменениями.


ГИГИЕНА УЧЕБНО-ВОСПИТАТЕЛЬНОГО ПРОЦЕССА В ШКОЛЕ

Работоспособность детей и подростков

Понятие об утомлении. После длительной, чрезмерной, а также во время монотонной или напряженной работы наступает утомление. Характерным проявлением утомления является снижение работоспособности. Развитие утомления связано, прежде всего с изменениями, происходящими в центральной нервной системе, нарушением проведения  нервных импульсов в синапсах.

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины нагрузки. Неинтересная работа быстрее вызывает наступление утомления. Дети утомляются при длительной неподвижности и при ограничении двигательной активности.

После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. И. М. Сеченов впервые показал, что восстановление работоспособности при наступившем утомлении происходит значительно быстрее не при полном покое и отдыхе, а при активном отдыхе, когда происходит переключение на другой вид деятельности.

Утомлению предшествует субъективное ощущение усталости, потребность в отдыхе. В случае недостаточного отдыха утомление, постепенно накапливаясь, приводит к переутомлению организма.

Переутомление у детей и подростков может возникнуть как следствие чрезмерной или неправильно организованной учебной и внеклассной работы, трудовой деятельности, сокращения продолжительности сна, отдыха на открытом воздухе, нерационального питания.

Работоспособность. Под работоспособностью понимается способность человека развить максимум энергии и, экономно расходуя ее, достичь поставленной цели при качественном выполнении умственной или физической работы. Это обеспечивается оптимальным  состоянием различных физиологических систем организма при их синхронной, скоординированной деятельности. Умственная и мышечная (физическая) работоспособность тесно связана с возрастом: все показатели умственной работоспособности возрастают по мере роста и развития детей.

Темп прироста скорости и точности умственной работы по мере увеличения возраста нарастает неравномерно и гетерохронно. Скорость и продуктивность работы за первые три года обучения нарастают одинаково на 37—42% по сравнению с уровнем этих показателей при поступлении детей в школу. За период от 10-11 до 12-13 лет продуктивность работы увеличивается на 63%, а качество – точность  ее лишь на 9%. В 11 —12 лет (VVI классы) наблюдается не только минимальный темп прироста качественного показателя (2%), но и ухудшение его в значительном числе случаев по сравнению с предыдущими возрастами. В 13—14 (девочки) и 14—15 лет (мальчики) темп нарастания скорости и продуктивности работы снижается и не превышает 6%, в то время как прирост качества работы возрастает до 12%. В 15—16 и 16—17 лет (IXX классы) продуктивность и точность работы возрастают на  14—26%.

У здоровых детей 6—7 лет, поступающих в школу с недостаточной готовностью организма к систематическому обучению по ряду морфофункциональных показателей, работоспособность также оказывается ниже и проявляет меньшую устойчивость по сравнению с детьми, готовыми к обучению, быстро к нему адаптирующимися и успешно справляющимися с возникающими трудностями. Однако устойчивость работоспособности у этих детей, в отличие от ослабленных школьников, повышается обычно уже к концу первого полугодия.

Фазы работоспособности и ее дневная периодичность. Во всякую работу, в том числе и в умственную, организм человека и особенно ребенка включается не сразу. Необходимо некоторое время вхождения в работу, или врабатывание. Это первая фаза работоспособности. В эту фазу количественные (объем работы, скорость) и качественные (количество ошибок, точность) показатели работы часто то асинхронно улучшаются, то ухудшаются, прежде чем каждый из них достигнет своего оптимума. Подобные колебания — поиск организмом наиболее экономичного для работы (умственной деятельности) уровня — проявление саморегулирующейся системы.

За фазой врабатывания следует фаза оптимальной работоспособности, когда относительно высокие уровни количественных и качественных показателей согласуются между собой и изменяются синхронно.

Спустя некоторое время, меньшее у учащихся 6—10 лет и большее у подростков, юношей и девушек, начинает развиваться утомление и проявляется третья  фаза  работоспособности.  Утомление проявляется сначала в несущественном, а затем в резком снижении  работоспособности. Этот скачок в падении работоспособности указывает на предел эффективной работы и является сигналом к ее прекращению. Падение работоспособности на первом ее этапе выражается снова в рассогласовании количественных и качественных показателей: объем работы оказывается высоким, а точность — низкой. На втором этапе снижения работоспособности согласованно ухудшаются оба показателя. На первом этапе снижения работоспособности регистрируется дисбаланс возбудительного и тормозного процессов в сторону преобладания возбудительного процесса (двигательное беспокойство) над активным внутренним торможением.

У большинства детей и подростков активность физиологических систем повышается от момента пробуждения и достигает оптимума между 11 и 13 ч, затем следует спад активности с последующим ее относительно менее длительным и выраженным подъемом в промежутке от 16 до 18 ч. Такие закономерные циклические изменения активности физиологических систем находят отражение в дневной и суточной динамике умственной работоспособности, температуры тела, частоты сердечных сокращений и дыхания, а также в других физиологических и психофизиологических показателях.

Суточная периодика физиологических функций, умственной и мышечной работоспособности имеет постоянный характер. Однако под влиянием режима учебной и трудовой деятельности изменения функционального состояния организма, прежде всего ЦНС, могут вызвать повышение или понижение уровня, на котором развертывается суточная динамика работоспособности и вегетативных показателей.

Большая учебная нагрузка, нерациональный режим учебной и трудовой деятельности или неправильное их чередование в течение дня и недели вызывают резко выраженное утомление организма. На фоне этого утомления возникают отклонения в закономерной суточной периодике физиологических функций.

Оптимальное состояние работоспособности в утренние часы, спад работоспособности во вторую половину дня характерны для большинства здоровых успевающих учащихся всех классов. За время бодрствования (с 7 до 21—22 ч) кривые периодики работоспособности и физиологических функций в 80% представляют двухвершинный или одновершинный тип колебаний.

Недельная динамика работоспособности. Помимо суточной периодики физиологических функций и психофизиологических показателей, в том числе работоспособности, отчетливо выражено их недельное изменение. Наибольшей работоспособность бывает к середине недели — в среду, к субботе падает. В понедельник человек втягивается в работу, со вторника по четверг работает с полной отдачей, а в пятницу происходит резкий спад работоспособности.

В понедельник у учащихся всех классов общеобразовательных школ и профессионально-технических училищ регистрируются низкие показатели умственной работоспособности, увеличенный латентный период зрительно- и слухомоторных реакций, большое количество срывов дифференцировочных реакций. Почти у половины учащихся бывают изменения суточных кривых вегетативных функций. Во вторник и в среду учащимся свойствен не только более высокий уровень показателей умственной и мышечной работоспособности, но и большая их устойчивость. Четверг и пятница в большинстве случаев оказываются днями сниженной работоспособности и наименьшей ее устойчивости.

Суббота наиболее неблагоприятный учебный день. Работоспособность детей и подростков бывает низкой. Однако часто в субботу наблюдается повышение положительной эмоциональной настроенности учащихся в связи с предстоящим днем отдыха. Организм, несмотря на утомление, мобилизует все имеющиеся у него ресурсы, что выражается в относительном подъеме умственной работоспособности,— явление так называемого конечного порыва.

Изменение работоспособности у учащихся в процессе учебной деятельности

В первой половине учебных занятий у большинства учащихся младших классов работоспособность сохраняется на относительно высоком уровне, обнаруживая подъем после первого урока. К концу третьего урока показатели работоспособности ухудшаются и еще больше снижаются  к концу четвертого урока.

Согласно с динамикой показателей работоспособности изменяется поведение учащихся в течение учебного дня. В начале третьего урока наблюдается снижение внимания у учащихся. Они смотрят в окно, рассеянно слушают объяснения учителя, часто меняют положение тела, разговаривают и даже встают с места. Короткий период возбуждения у большинства детей со второй половины третьего урока сменяется вялостью; дети потягиваются, зевают, плохо следят за объяснениям учителя, с трудом сохраняют правильную позу. От начала уроков к их окончанию двигательное беспокойство нарастает.

У учащихся среднего и старшего школьного возраста за равное время занятий выявлены менее глубокие сдвиги функционального состояния нервной системы, чем у школьников начальных классов. Тем не менее к окончанию пятого часа занятий у учащихся среднего и старшего школьного возраста изменения функционального состояния центральной нервной системы оказываются значительно выраженными. Заметное изменение средних величин показателей умственной работоспособности, зрительно-моторных реакций, координации движений в сторону ухудшения по сравнению с данными до начала занятий и особенно с данными после первого урока проявляется к концу третьего часа занятий.

Наиболее резкие изменения функционального состояния центральной нервной системы учащихся среднего и старшего школьного возраста  происходят после ия того часа занятий.

Особенно велики изменения показателей работоспособности при занятиях старшеклассников во вторую смену. Короткий перерыв между подготовкой уроков и началом занятий в школе не обеспечивает восстановления  неблагоприятных изменений в функциональном состоянии центральной нервной системы. Работоспособность резко снижается уже па первых часах занятий, что особенно. отчетливо проявляется в поведении учащихся на уроках.

Таким    образом,    целесообразные    сдвиги    работоспособности проявляются у учащихся в начальных классах на первых трех уроках, а в средних и старших — на четвертых и пятых. Шестые часы занятий проходят в условиях сниженной работоспособности. В соответствии с положениями, раскрывающими основные направления реформы общеобразовательной и профессиональной школы, предусмотрено строго определенное количество учебного времени в неделю: в I классе — 20 ч, во II — 22 ч, в IIIIV — 24 ч, в VVIII —30 ч и в IXXI классах —31 ч.

Наблюдения за изменением функционального состояния организма детей 7 лет в процессе приготовления ими уроков показали, что наиболее плодотворно они работают 45 мин. Наиболее эффективная продолжительность приготовления уроков учащимися вторых классов составляет 1 ч. У учащихся IIIIV классов наиболее эффективная продолжительность самостоятельной учебной работы составляет 1,5 ч. Существенное по интенсивности снижение работоспособности наступает у учащихся VVI классов через 2 ч, VIIVIII — через 2,5 ч. Работоспособность старшеклассников в процессе самостоятельных учебных занятий характеризуется большей устойчивостью.

После 3 ч работы у большинства учащихся старших классов начинается резкое снижение умственной работоспособности, остроты  зрения,   быстроты   зрительно-моторных  реакций.

Большая по сравнению с указанной для каждого класса продолжительность домашних учебных занятий проходит при значительно сниженной работоспособности учащихся, что не может обеспечить успешного выполнения задания. Кроме того, чрезмерно продолжительные учебные занятия неблагоприятно отражаются на состоянии здоровья учащихся, так как неизбежно приводят к сокращению длительности их сна и активного отдыха на открытом воздухе.

В обязанность учителей и классных руководителей входит осуществление контроля за учебной нагрузкой учащихся вверенного им класса. Путем использования методики программного опроса можно легко установить, соответствует ли средняя продолжительность самостоятельной учебной работы детей и подростков гигиеническим нормативам, сколько учащихся не выдерживают эти нормативы, кто и почему существенно превышает их. Средний объем домашних учебных заданий устанавливается по классному журналу или дневнику.

Учащимся, которые занимаются в первую смену, целесообразно начинать выполнение домашнего задания с 15—16 ч, после продолжительного перерыва в занятиях и обязательного активного отдыха и приема пищи. Учащиеся второй смены готовят уроки с 8 ч 30 мин или 9 ч утра. Путем совершенствования методов преподавания и рационального проведения занятий в классе можно значительно упорядочить и сократить самостоятельную работу дома.

Домашние задания по учебным предметам для самостоятельной работы детям 6 лет не задают.

Продолжительность урока. Непрерывная умственная деятельность определяет существенным образом динамику работоспособности учащихся и ее уровень на протяжении всех занятий.

Работоспособность     и     активность     первоклассников       наиболее высоки первые 15 мин работы. Особенно выражено это в начале учебного года. После 30 мин непрерывной работы регистрируется падение работоспособности, ухудшение внимания и ослабление памяти, снижение подвижности основных нервных процессов и нарушение взаимодействия сигнальных систем. Поэтому первоклассникам урок ограничивают 35 мин. С гигиенической точки зрения укороченные уроки целесообразны и во 2-3 классах. Учебный день школьники при этом заканчивают при более высокой работоспособности, что важно для последующей подготовки домашних заданий.

Продолжительность урока для учащихся IIX (XI) классов 45 мин. Для поддержания должного уровня работоспособности рекомендуются небольшие динамические паузы в середине урока, чередование видов деятельности в течение урока.

Гигиена письма. Для первоклассников (детей 6—7 лет) весьма затруднителен процесс письма. Становление навыка письма требует длительного времени. Это обусловлено морфофункциональными особенностями детей. Формирование у них кисти руки протекает еще длительное время после начала систематического обучения. В середине учебного года при зрительной коррекции время написания элемента буквы в среднем требует в I классе у учащихся 6 лет 5,20 с и 7 лет — 1,98 с. В III классе в середине учебного года время написания элементов буквы уменьшалось в 2,5—4,4 раза у учащихся, соответственно начавших обучение с 7 и 6 лет. При этом отклонение от нормы правописания составляет у учащихся в I классе 32— 49,8% (соответственно дети 7 и 6 лет), во II классе — 23—32,9% и в III классе—17—19%.

Во время письма быстро развивается утомление, нарушается правильное положение руки и правильная посадка за партой (ученическим столом).

Без ущерба для правильного развития кисти правой руки и эффективного формирования навыка письма его общая продолжительность на уроке в III классах не должна превышать 7 мин, а длительность  непрерывного письма — 3 мин.

На уроке и дома целесообразно прерывать письменную работу гимнастикой для пальцев: сжимание и разжимание кисти. Это упражнение, повторяемое 2—3 раза, повышает работоспособность детей, содействует развитию мелких мышц кисти и совершенствованию координации точных движений небольшой амплитуды. Наилучший эффект дают физкультпаузы, во время которых выполняется не только указанная гимнастика для пальцев рук, но также дыхательные упражнения, сгибание и разгибание позвоночника в поясничном и шейном отделах. За урок таких пауз рекомендуется две.

Овладению навыком письма способствуют специальные тренировочные упражнения, в частности штриховка в различных направлениях: слева направо, справа налево, сверху вниз, по горизонтали. Вырезывание, лепка, рисование, развивающие точность и координацию движений, также весьма полезны.

Гигиена чтения. Чтение — также весьма затруднительный для учащихся IIV классов процесс. Большую нагрузку испытывают глазодвигательные мышцы. Особенно утомительны обратные движения глаз, обусловленные потерями читаемого текста и необходимостью в связи с этим возвращения к уже прочитанному тексту (строчке). У младших школьников со слабо сформированным навыком чтения число обратных движений глаз в 10 раз больше, чем у старших учащихся. С учетом этой особенности и других результатов физиологических исследований непрерывная целесообразная продолжительность чтения составляет для учащихся I класса 7—10 мин, II класса— 15 мин и III класса — 20—25 мин. Трудность чтения усугубляется, если полиграфическое оформление учебников не отвечает требованиям гигиены,

Как и при письме, наиболее физиологичной удаленность глаз от книг, (тетрадей при письме) оказывается в 24—25 см для учащихся IIV классов и в 30—35 см для подростков.

Правильная рабочая поза снижает утомительную статическую нагрузку на организм учащихся и облегчает процессы чтения и письма. Оптимальной является рабочая поза с небольшим наклоном вперед (угол наклона в грудной части корпуса достигает 170°). Больший же наклон корпуса (145°) вперед становится неблагоприятным, поза крайне утомительна. Затруднено чтение и письмо при прямой позе, которую педагоги необоснованно часто требуют от учащихся. Учащиеся должны иметь возможность изменять позу во время занятий.

Чередование различной деятельности в течение недели. К концу учебной недели работоспособность школьников существенно снижается. Организация в четверг «разгрузочных» дней со сниженным объемом учебной нагрузки, экскурсиями, прогулками способствует повышению работоспособности школьников в пятницу и субботу. Работоспособность старшеклассников сохраняется на более высоком уровне в конце недели в том случае, если для трудовой деятельности выделяется один день — четверг или два дня — понедельник и четверг.

Регулярное чередование учебных дней и дней, выделяемых для трудовой деятельности, создает предпосылки для более равномерного распределения   учебной  нагрузки.

Учитывая особенности недельной динамики работоспособности, для занятий в субботу и понедельник следует предусматривать меньшее количество учебных часов и отводить их преимущественно предметам, не требующим от учащихся особого умственного напряжения. Объем домашних заданий на понедельник должен быть не больше, чем в другие дни. Увеличение объема домашних заданий на понедельник с расчетом выполнения их в воскресенье лишает учащихся необходимого отдыха.

Чередование учебной и трудовой деятельности с отдыхом. В современном понимании механизма снижения функционального состояния основных физиологических систем в процессе работы наилучшие условия для его быстрейшего восстановления обеспечивает активный отдых во время коротких и более длительных перерывов в работе.

Активный отдых во время большой перемены, проводимой школьниками на воздухе оказывает более высокое положительные влияние на работоспособность организма, чем обычные большие перемены, проводимые в помещении школы.




1. Стандарты скорой медицинской помощи
2. і
3. I.com
4. ТЕМА 4 Многоклеточные организмы
5. Історичні й соціально-економічні аспекти практики застосування альтернативних видів покарань
6. Особенности организационной структуры банка
7. е. заведомо предполагает необходимость смягчения и коррекции тех или иных качеств 8
8. Мужчины любят девушек которые соблюдают Правила.
9. Шагаа 2014 Мероприятия Дата Ме
10. Разностное уравнение yk22yk13yk 0 явл- линейным 2
11. Разработка конструкции комплекта (жакет и юбка) женского выставочного назначения
12. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата технічних наук Київ ~ 2002 Дисерт.
13. статья пункт закона содержащие ответ на вопрос 1 Что является целью федеральног
14. Актуальные вопросы иммунизации- предоставление иммунизационных услуг
15. Родина за которым был закреплён 7971 га сельскохозяйственных угодий в том числе 5861 га пахотной земли
16. Тируварулпа Божественная Песнь Милости рассказывается что когда перед изваянием Натараджа поднялся зан
17. Теоретические основы подхода к стратегическому управлению предприятиями малого бизнеса [2]
18. Статья набранная на компьютере содержит 48 страниц на каждой странице 40 строк в каждой строке 64 символа
19. I. Имеет овоидную форму размеры 10'2003'07 мкм
20. САНКТПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИИ И ДИЗАЙНА ИНЖЕНЕРНАЯ ШКОЛА ОДЕЖДЫ КОЛЛЕ