Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

лекційний курс t C

Работа добавлена на сайт samzan.ru: 2016-03-13


PAGE  171

Комплексний навчальний посібник: лекційний курс


t

C

B

A

O

p

R

 Оперон

інтрон

інтрон

інтрон

інтрон

екзони

Вступ

З історії розвитку біохімії

Біологічна хімія, або біохімія, – це наука про хімічний склад живих організмів і хімічні процеси, що забезпечують їх існування. Слово „біохімія” походить від двох грецьких слів: bios – життя і chemia  – наука про склад, внутрішню будову, властивості і взаємні перетворення речовин. Таким чином, можна сказати, що біохімія – це наука про хімію життя, про хімічні явища, що протікають в живій природі.

Залежно від об'єкту вивчення розрізняють біохімію людини (медичну біохімію), тварин, рослин, мікробів і вірусів. За напрямом вивчення організмів біохімію ділять на статичну (про хімічну природу і властивості речовин, що входять в досліджуваний об'єкт), динамічну (перетворення речовин від моменту надходження в організм і закінчуючи виділенням кінцевих продуктів обміну) і функціональну (про хімічні основи фізіологічної діяльності організму в цілому, органу, тканини, клітини і інтрацелюлярних структур). Зрозуміло, що такий розподіл умовний, оскільки при біохімічному дослідженні важко розмежувати ці три напрями, які доповнюють один одного. Проте в результаті можна отримати різносторонню характеристику об'єкту.

Багато закономірностей, які встановлені біохімічними методами, є загальними для всіх живих організмів, тому вони вивчаються в загальній біохімії. Біохімічні особливості окремих систем, органів, тканин і клітин розглядаються спеціальною біохімією.

Результати багатьох біохімічних досліджень мають прикладне значення. Так, в самостійну галузь була виділена клінічна біохімія. За допомогою її методів уточнюється і ставиться діагноз, призначається і контролюється лікування, намічаються і проводяться заходи щодо профілактики різних хвороб людини і тварин. Велике народногосподарське значення має технічна біохімія – теоретична основа виробництва багатьох видів харчової промисловості (хлібопечення, консервації плодів, овочів, продуктів тваринництва, виноробства, чаю та ін.), отримання лікарських речовин, кормових добавок для тваринництва, ряду органічних сполук (етанолу, лимонної і молочної кислот і т. д.).

Останніми роками розвиваються нові напрями біохімії, зокрема еволюційна біохімія, яка вивчає питання походження життя на Землі і шляхи ускладнення обміну речовин в процесі розвитку органічного світу. Особливої уваги заслуговує радіаційна біохімія, що розглядає зміни хімічного складу організмів і обміну речовин в них під впливом радіації та розробляє методи біохімічного захисту від радіації, а також шляхи виведення нових високоврожайних сортів культурних рослин і видів корисних мікроорганізмів під впливом іонізуючого випромінювання. Інтенсивно розвивається космічна біохімія, яка досліджує біохімічні проблеми, пов'язані з освоєнням космічного простору.

Розвиток біохімії нерозривно пов'язаний з іншими суміжними теоретичними дисциплінами – загальною біологією, гістологією, цитологією, генетикою, фізикою, біофізикою, неорганічною, аналітичною, органічною, фізичною, колоїдною і біофізичною хіміями, молекулярною біологією і фізіологією. Знання, отримані при вивченні біохімії, служать теоретичною базою для освоєння прикладних наук – годування і розведення сільськогосподарських тварин, зоогігієни, скотарства, патологічної фізіології, фармакології, технологічних та всіх клінічних дисциплін.

Формування біохімії як науки у XVI–XIX ст. Перші біохімічні відомості відомі людині з глибокої старовини. Людина знала і використовувала біохімічні процеси в хлібопеченні, виготовленні вин, лікарських засобів, дубленні шкір, оцту та ін. Проте ці знання були емпіричними.

Велика кількість даних, які надалі зіграли важливу роль при формуванні біохімії як науки, накопичено в епоху Відродження. Геніальний учений і художник Леонардо да Вінчі (1452 – 1519) встановлює, що всі життєві процеси протікають за наявності кисню. В цей час розвивається новий напрямок, який називається ятрохімією. Основоположником ятрохімії був Ф. Парацельс (1493 – 1541). Ятрохіміки почали розглядати хворобу як наслідок порушення в організмі людини і тварин обміну речовин. Вони ввели в лікувальну практику препарати сурми, ртуті, заліза та ін. Я.Б. ван Гельмонт (1579 – 1644) встановив, що в утворенні сухої речовини рослини беруть участь елементи води. Він вперше отримав в чистому вигляді вуглекислий газ, описав процеси травлення, сечовиділення, визначив густину сечі при різних хворобах людини і прийшов до висновку, що хвороба це перш за все порушення хімічної рівноваги між організмом і зовнішнім середовищем.

Проте уявлення ятрохіміків про складні процеси, що протікають в живому організмі, нерідко були наївні і навіть шкідливі. Так, Ф. Парацельс стверджував, що організм складається з трьох речовин – ртуть, сірки і солі, які знаходяться між собою в певних кількісних співвідношеннях. Наприклад, тоді вважали, що виразка і лихоманка виникають від надлишку в організмі сірки, понос і водянка – від надлишку солі, параліч і меланхолія – від надлишку ртуті.

Історія біохімії – це історія боротьби двох світоглядів; матеріалістичного і ідеалістичного. На самому початку свого розвитку біохімія зіткнулася з помилковою хімічною теорією флогістону – „вогненної матерії” з негативною масою, яка міститься у всіх горючих речовинах. Першим ученим, що заклав основи матеріалістичних поглядів на існування живої матерії, був M.В. Ломоносов (1711 – 1765), який довів, що ніякого флогістона в природі немає і бути не може. Ним був відкритий загальний закон природи про збереження матерії і руху. Висновки M.В. Ломоносова незабаром підтверджує А.Л. Лавуазье (1743 – 1794). В ці роки вивчається хімічний склад повітря і води. Створюються уявлення про процеси дихання живих організмів як повільному горінні.

Формуються основи теорії фотосинтезу. Д. Прістлі (1733 – 1804) і К. Шеєле (1742 – 1786) встановлюють, що CO2, NH3 і O2 пов'язані з процесами, які забезпечують існування рослин. Виявилося, що рослини поглинають з повітря CO2 і виділяють O2. Я. Інгенхауз приходить до висновку, що ці реакції здійснюються тільки в зелених частинах рослин на сонячному світлу. Ж. Сенебье (1742 – 1809) встановлює, що CO2 використовується рослинами як сировина для синтезу органічних речовин. Вивчається круговорот речовин в природі і закономірності азотного обміну (Ж.Б. Буссенго, 1802 – 1887). Ю. Лібіх (1803 – 1873) створює теорію мінерального живлення рослин.

Розробляються нові методи хімічного аналізу. Великі заслуги в цьому належать Ю. Лібіху, який пропагував застосування результатів хімічних досліджень в медицині, тваринництві і рослинництві. Він удосконалює методику визначення водню і вуглецю в органічних сполуках, з'ясовує елементарний склад багатьох харчових речовин, які надалі стали називати білками, ліпідами і вуглеводами. В цей же час розробляються методи визначення азоту в білках. За вмістом азоту в сечі починають судити про стан білкового обміну в організмі клінічно здорової або хворої людини. Хімічні методи використовуються при вивченні хімії живих істот.

До першої четверті XIX ст. біохімія входила в загальну хімію. Після виникнення органічної хімії вона злилася з нею, утворюючи основу майбутнього статичного і динамічного напряму в біохімії. В цей час К. Шеєле з природних продуктів виділяє гліцерин, лимонну, молочну, яблучну, щавлеву і сечову кислоти. І. Руель в сечі людини відкриває сечовину, Ю. Лібіх – гіпурову і А. Маркграф – фосфорну кислоти. В тонких зрізах коренів цукрового буряка А. Маргграф виявляє сахарозу. У складі жовчі виявляється холестерин, рослинних соків – глюкоза і фруктоза. В 1822 р. Л. Гмелін у своїй книзі „Керівництво по теоретичній хімії” приводить перші 80 органічних сполук.

Всі ці факти сприяють затвердженню матеріалістичного уявлення про будову живої матерії і реакції обміну речовин. В кінці XVIII і на початку XIX ст. біохімія, що розвивається, зіткнулася з ідеалістичною теорією в біології – теорією віталізму (лат. vita – життя). Віталізм стверджував, що між живою і неорганічною матерією існує різка грань, що органічні речовини синтезуються в організмі під впливом так званої „життєвої сили”.

Нищівний удар по віталізму наніс Ф. Велер (1800 – 1882), який синтезував в 1828 р. з ціаніду амонія сечовину.

Незабаром були синтезовані інші органічні сполуки – хлороформ (Ю. Лібіх, 1831), анілін (М.М. Зінін, 1842), оцтова кислота (А. Кольбе, 1845), жир (M. Бертло, 1854), моносахариди (О.M. Бутлеров, 1861) і т.д. Органічна хімія стає синтетичною. Зусилля хіміків-органіків спрямовані на отримання нових органічних речовин, необхідних промисловості, медицині, побуту. Геніальний російський учений О.M. Бутлеров (1828 – 1886) створює теорію будови органічних речовин – основу подальшого розвитку органічної хімії. До кінця XIX ст. було вивчено і зареєстровано близько 100 000 різних органічних речовин. Тепер в задачі органічної хімії не входило дослідження хімічного складу живих об'єктів, тим більше реакцій обміну речовини.

Відомості про будову живої матерії і хімізм реакцій обміну речовин у першій половині XIX ст. носили випадковий характер. Вони були отримані фізіологами, хіміками, технологами, лікарями, морфологами, які в своїй практичній діяльності стикалися з тим або іншим питанням і вивчали його, вносячи, таким чином, внесок в розвиток біохімії.

До 50-х років XIX ст. в біохімії склався комплекс різних методів, розроблених M.В. Ломоносовим, Д. Прістлі, К. Шеєле, А.Л. Лавуазье Д. Дальтоном, Ж.Л. Гей-Люссаком, І. Берцеліусом, Ю. Лібіхом та ін. При поясненні багатьох біохімічних реакцій використовуються фізичні і хімічні закони. Н.Т. Соссюр (1767 – 1845) проводить розрахунок стехіометрії обміну газів у рослинах в процесі фотосинтезу. Ю.Р. Майер (1814 – 1878) формулює перший закон термодинаміки і встановлює його застосовність до живих систем. В ці роки біохімія входить у фізіологію, оскільки біохімічні дослідження пов'язані з фізіологічними (при вивченні хімічної природи окремих функцій живих організмів).

В науці нагромадилася велика кількість відомостей про хімічну природу речовин, з яких складається жива матерія. Ю. Лібіх характеризує основні речовини тканин живих організмів – білки, ліпіди, вуглеводи (1839 р.). M. Шеврель (1786 – 1889) досліджує будову і властивості жирів (1823 р.). Були отримані перші відомості про перетворення цих речовин в процесах асиміляції і дисиміляції. Встановлено багато проміжних і кінцевих продуктів обміну речовин. І. Берцеліус (1779 – 1848) створює основи вчення про каталіз, дає характеристику відомим у той час ферментам і пояснює природу реакцій бродіння.

Роботи хіміків-органіків по синтезу органічних речовин зруйнували раніше існуючу в уявленнях учених грань між живим і неживим. Формуються матеріалістичні погляди на процеси обміну речовин в живих організмах, особливо на біосинтез органічних речовин з неорганічних в реакціях фотосинтезу. К. Бернар (1813 – 1878) виділяє з тканин печінки глікоген, експериментально доводить його розщеплення до глюкози, яка, поступаючи в кровоток, служить джерелом хімічної енергії в організмі. Ним же висувається діалектична теза: стабільність внутрішнього середовища є умовою свободи і незалежності існування організму. Окремі речовини, виявлені в біологічних рідинах організму людини і тварин (шлунковому сокові, жовчі, крові, сечі), зацікавили клініцистів, оскільки відомості про них (якісні і кількісні) стали допомагати лікарям діагностувати хвороби, призначати і контролювати лікування. Біохімія завоювала право на своє існування як самостійна дисципліна. Створюються перші підручники по біохімії (І. Зимон, Ю. Лібіх, А.І. Ходнев).

Формування і розвиток сучасних напрямів біохімії. Після виходу у світ перших підручників по біохімії (1842 – 1846) вона інтенсивно розвивається як наука на всіх напрямках. Детально вивчається хімічний склад живої матерії на рівні організму, органу, тканин і клітин. У зв'язку з інтенсивним розвитком науки і техніки розробляються нові методи біохімічного аналізу. Детально досліджуються закономірності реакцій асиміляції і дисиміляції в живому організмі за самих різних умов. Біохімія відділяється від фізіології і диференціюється на окремі напрями залежно від об'єкту і мети дослідження. Результати біохімічних досліджень широко впроваджуються в технологію, медицину, ветеринарію і тваринництво.

Особливо бурхливо біохімія розвивається в Росії. Зміст, напрям і глибина біохімічних досліджень, виконаних в другій половині XIX ст., визначалися впливом робіт Д.І. Менделєєва, О.М. Бутлерова, І.M. Сеченова, І.П. Павлова, К.А. Тімірязева.

Основоположником вітчизняної біохімії слід вважати О.Я. Данилевського (1838 – 1923), який створив першу в Росії велику фізіолого-хімічну школу. Вона провела ряд фундаментальних досліджень, актуальність яких не втратила значення і в наші дні. Були детально вивчені склад, будова і властивості багатьох білків тканин людини і тварин. Були створені основи поліпептидної теорії будови білкової молекули. Був здійснений ферментативний синтез білковоподібних речовин. Був розроблений метод отримання і очищення ферментів соку підшлункової залози адсорбцією і елюцією, що дозволило виділити амілазу і трипсин у чистому вигляді. О.Я. Данилевський припустив існування антиферментів і ввів поняття про протоплазму як про складну фізико-хімічну систему живої клітини.

Були досягнуті значні успіхи в розвитку динамічної біохімії. На її розвиток величезний вплив мали роботи І.M. Семенова. (1829 – 1905) – засновника російської фізіологічної школи. Ним і його школою детально була вивчена фізіологія і хімія дихання, вплив на ці процеси складу їжі, функціонального стану організму, навколишньої температури та інших чинників. Великий фізіолог вважав задачею хіміків усестороннє вивчення обміну речовин, починаючи з моменту надходження окремих сполук в організм і закінчуючи виділенням кінцевих продуктів. Подальший розвиток біохімії в Росії був пов'язаний з роботами найбільшого вітчизняного ученого-фізіолога І.П. Павлова (1849 – 1936). У його лабораторії був детально вивчений склад травних соків, проведений комплекс досліджень по травленню, що дало можливість прослідити процеси ферментативного розщеплення харчових мас до простих складових частин (амінокислот, моносахаридів, гліцерину, жирних кислот, мінеральних сполук). Були досліджені різні аспекти всмоктування харчових продуктів, встановлена нейрогуморальна регуляція реакцій обміну речовин і роль зовнішнього середовища в цих процесах, відкриті нові ферменти (ентерокіназа) і введено поняття – проферменти, розшифровано значення печінки в нейтралізації аміаку і утворенні сечовини та ін.

У 1891 р. в Петербурзі M.В. Ненцький (1847 – 1901) створює першу в країні біохімічну лабораторію. Л.П. Мархлевський і M.В. Ненцький встановлюють хімічну спорідненість гемоглобіну і хлорофілу. Вивчається хімічна будова гема, продукти розпаду білків, хімічний склад бактерій та ін. В.Г. Гулевич відкриває в м'язовій тканині карнітин, карнозин та ін. С.С. Салазкін вивчає деталі азотного обміну в організмі тварин (утворення сечовини, сечової кислоти та ін.).

Інтенсивно розвивається біохімія рослин. К.А. Тімірязев і його співробітники вивчають процеси фотосинтезу. В.І. Палладін формулює теорію дихання рослин. О.М. Бах створює перекисну теорію біологічного окислення.

В ці роки проводяться дослідження, що визначили подальший зміст біохімії. У 1880 р. М.І. Лунін відкриває додаткові чинники живлення, які пізніше були названі вітамінами. Р.А. Бунге встановлює значення багатьох макро- і мікроелементів в обміні речовин. В.І. Вернадський закладає основи вчення про біосферу.

Ряд найважливіших робіт виконують зарубіжні учені. Ф. Мішер у 1868 р. відкриває нуклеїнові кислоти. Л. Пастер розшифровує багато реакцій клітинного дихання і бродіння. P. Келлікер в 1857 р. відкриває мітохондрії. В лабораторіях Е. Фішера, А. Косселя і Ф. Гофмейстера створюються основи сучасних уявлень про структуру і властивості білків. Е. Фішер вивчає механізм дії ферментів. К. Нейберг розробляє схему реакцій спиртового бродіння і в 1903 р. замінює термін „фізіологічна хімія” новим – „біохімія”. У. Бейлісс і Е. Старлінг відкривають гормони. В 1911 р. К. Функ з рисових висівок виділяє додатковий чинник живлення і називає його вітаміном. С. Сервісен вводить поняття рН і розробляє методи синтезу амінокислот.

У першій половині XX ст. формуються сучасні напрями біохімії – біохімія людини (медична біохімія), тварин, рослин, мікробів і вірусів. Інтенсивно розвиваються клінічна і технічна біохімія. Відбувається диференціація біохімії на окремі галузі: вітамінологію, ензимологію, біохімію гормонів, гісто- і цитохімію, еволюційну, порівняльну, радіаційну біохімію та ін.

Розвиток біохімії в СРСР. Засновником школи радянських біохіміків є О.М. Бах. У 1921 р. він організував Біохімічний інститут Народного комісаріату охорони здоров'я, а в 1935 р. спільно з О.І. Опаріним – Інститут біохімії АН СРСР.

Розвиток біохімії тварин починається з 1922 р., коли акад. О.М. Бах створив при Державному інституті експериментальної ветеринарії (ДІЕ-В) біохімічне відділення. У відділенні, яке було перетворено в лабораторію біохімії, розробляються різні питання теоретичної і практичної ветеринарної біохімії, готуються кадри вищої кваліфікації для вузів, науково-дослідних інститутів і ветеринарних лабораторій країни. В різні роки тут працювали відомі фахівці в області біохімії – Б.І. Збарський, В.О. Енгельгардт, Д.О. Цуверкалов, H.M. Клімов, І.І. Кучеренко, M.А. Бабіч, В.M. Красов, О.Р. Малахов, В.Ф. Поляков, Р.Ф. Коромислов та ін. У медичних, ветеринарних і сільськогосподарських вузах створюються кафедри біохімії, в республіканських і обласних ветеринарних лабораторіях – біохімічні відділи, вирішальні питання практичної ветеринарії. Результати біохімічних досліджень широко впроваджуються в різні галузі народного господарства, медицину, ветеринарію, тваринництво.

На Україні перший інститут біохімії був організований у 1925 р. О.В. Палладіним у м. Харкові. З 1934 р. цей інститут був переведений до м. Києва. Нині Інститут біохімії імені О.В. Палладіна НАН України є одним з найбільших наукових центрів, в якому всесторонньо розробляються актуальні питання біохімії.

Найвидатніші біохіміки нашої країни – О.М. Бах, Б.І. Збарський, О.В. Палладін, В.О. Енгельгардт, О.М. Белозерський, О.І. Опарін, Я.В. Пейве, С.E. Северин, В.В. Ковальський, О.О. Баєв, О.С. Спірин та ін.

Значний внесок в розвиток біохімії тварин внесли П.П. Астанін, С.І. Афонський, С.С. Гжіцький, Р.В. Камалян, E.С. Савронь, Ф.Я. Беренштейн, О.Т. Апасьев, С.І. Трусов та ін. Успішно вирішують багато проблем сучасної біохімії тварин лабораторії М.О. Шманенкова, M.Ф. Гулого, H.Р. Григорьева, І.Д. Головацького, А.Р. Малахова, М.M. Клімова, Я.А. Бабіна, Ф.Ю. Палфія, О.В. Чечеткіна, X.Ш. Казакова, M.T. Таранова, К.Р. Сухомлин, С.І. Кусеня та їх численних учнів.

Членами Академії наук СРСР було багато видатних біохіміків США, Англії, Франції і інших країн. Зокрема, X.Г. Корана – автор досліджень по синтезу нуклеотидів, коферментів, гена; С. Очоа – виконав комплекс робіт по синтезу РHK і вивченню структури ферментів; Л.К. Полінг – автор робіт про природу хімічного зв'язку в комплексних сполук; А. Сент-Дьердьї – відкрив вітамін С і отримав його синтетично, автор багатьох робіт по клітинному диханню, м'язовому скороченню; В. Пролог – автор робіт по стереохімії, який розробив сучасні методи дослідження в біохімії.

У багатьох країнах світу існують наукові біохімічні товариства, які діють і зараз. В СРСР у 1958 р. було створено Всесоюзне біохімічне товариство (ВБТ) з республіканськими і міськими відділеннями, об'єднує близько 10000 біохіміків різних напрямів. Воно є колективним членом Міжнародного біохімічного союзу і Європейської федерації біохіміків. ВБТ координує біохімічні дослідження в різних галузях біохімії, організовує наукові конгреси, з'їзди, конференції і симпозіуми, здійснює наукові контакти з іншими науковими товариствами країни і за рубежем, видає щорічник „Успіхи біологічної хімії”.

Через кожні п'ять років проводяться Всесоюзні біохімічні з'їзди, на яких підводяться підсумки роботи біохіміків різних напрямів, визначаються шляхи впровадження результатів досліджень і намічаються перспективи подальшої роботи.

Лекція № 1. Методи дослідження в біохімії. Живі системи та їх організація. 

НАПРЯМИ І МЕТОДИ ДОСЛІДЖЕННЯ В БІОХІМІЇ

Обмін речовин – основна ознака живого. Основною межею, що відрізняє живу матерію від неживих тіл, є обмін речовин. Ф. Енгельс, визначаючи життя, відзначав: „Життя є спосіб існування білкових тіл, істотним моментом якого є постійний обмін речовин з оточуючою їх зовнішньою природою, причому з припиненням цього обміну речовин припиняється і життя, що приводить до розкладання білка”.

Обмін речовин складається з двох взаємозв'язаних і взаємообумовлених процесів – асиміляція і дисиміляція. Асиміляція – це комплекс фізіологічних і біохімічних перетворень речовин, які поступають в організм, в сполуки, необхідні для його існування. Обмін речовин в тваринному і рослинному організмах має принципові відмінності. Так, рослина будує складові частини свого тіла в процесі фотосинтезу в основному в результаті використання сонячної енергії, води, вуглекислого газу і мінеральних речовин, а людина і тварини одержують речовини рослинного і тваринного походження після їх попереднього розщеплення в травному тракті.

У різних органах, тканинах і клітинах утворюються окремі речовини, необхідні для самозбереження і функціонування живого організму. Ці речовини не є незмінними: в процесі життя вони синтезуються, розпадаються і самооновлюються. При розкладанні цих речовин утворюються шкідливі для організму сполуки, які виводяться з нього як кінцеві продукти обміну. Цей процес називається дисиміляцією.

Біохімічні методи використовуються головним чином для вивчення закономірностей процесів асиміляції і дисиміляції в живих організмах з тим, щоб направлено впливати на ці процеси.

Матеріал для біохімічних досліджень. Біохімічні дослідження проводяться на матеріалі, отриманому від людини, тварин, рослин, мікробів і вірусів. Ним можуть бути продукти життєдіяльності організму, органи, тканини, клітини і субклітинні структури. Матеріал одержують від живих і неживих організмів. Пробами для біохімічних досліджень живих організмів може бути вміст початкових і кінцевих речовин балансових дослідів, ангіостомії, різні біологічні рідини (кров, лімфа, ліквор, травні соки, сеча, химус, піт та ін.), біопсійний матеріал (шматочки органів і тканин, видалених хірургічним шляхом), продукти життєдіяльності організму (молоко, шерсть, середовище існування мікробів) та ін. Проби слід брати швидко, з дотриманням правил асептики і антисептики, етикетувати, після чого піддавати відповідній обробці, яка забезпечувала б максимальне збереження прижиттєвого хімічного складу.

Для біохімічних досліджень твердий матеріал (шматочки органів і тканин) подрібнюється до однорідної кашки (розтиранням в ступці з кварцовим піском) або до гомогенної маси (подрібненням в гомогенізаторах, ультразвуком, осмотичним цитолізом, методом заморожування і відтавання). Подрібнена кашка, гомогенат або біологічні рідини за звичай негайно фіксуються в рідкому кисні, охолоджених сумішах діетилового ефіру, ацетону та ін. Іноді такий матеріал заливають відповідним розчинником, що екстрагує досліджувану речовину або групу речовин. Часто вдаються до озолення матеріалу сухим (обвуглюють, а потім одержують водну або солянокислу витяжки) або мокрим (руйнують окислюючими сумішами) способами. У ряді випадків гомогенати піддають диференціальному центрифугуванню, одержуючи окремі фракції субклітинних структур. Отриманий і підготовлений для біохімічних досліджень матеріал бережуть в певних умовах, передбачених методом, найчастіше при температурі 0 – 4 °C. Зберігання матеріалу не повинно бути тривалим, оскільки з часом його хімічний склад змінюється. В деякі види матеріалу (наприклад, в сечу) для збереження додаються фіксуючі засоби (кристали тимола).

Рівні вивчення обміну речовин. Обмін речовин в живій матерії можна вивчати на різних рівнях, починаючи від організму і кінчаючи атомами. Серед методів вивчення обміну речовин на рівні цілісного організму особливе місце займає метод балансових дослідів, коли в організмі тварини розглядається перетворення речовин, починаючи від складу корму і кінчаючи продуктами кінцевого обміну, які визначаються у видихуваному повітрі, сечі, калі, поті. Цінні дані по обміну речовин в цілісному організмі можна отримати методом колориметрії, який дає можливість визначити енергетичну цінність поживних речовин в звичайних умовах і в умовах досліду. Окремі сторони перетворення речовин в організмі можна вивчити методом визначення дихального коефіцієнта. Багато сторін обміну речовин в організмі вивчають, досліджуючи хімічний склад окремих біологічних рідин (наприклад, за вмістом іонів Ca2+ в сироватці крові можна судити про стан обміну кальцію в організмі).

Матеріал для біохімічних досліджень, який характеризує обмін речовин на рівні окремих органів, одержують при постановці спеціальних дослідів. До них слід віднести метод ангіостомії, розроблений E.С. Лондоном. В кровоносні судини органу вставляють канюлі, за допомогою яких одержують проби артеріальної і венозної крові. При органостомії канюлю вставляють до органу, а після загоєння рани беруть проби для біохімічного аналізу. І.П. Павлов і його учні розробили постановку фістул для більшості органів травлення. Іноді матеріалом для досліджень служать біологічні рідини (кров, лімфа, ліквор, сеча та ін.), отримані від тварин, у яких видалений або був підсаджений орган (найчастіше – залози внутрішньої секреції).

Деякі біохімічні дослідження проводяться на тканинному рівні. Представляє інтерес метод тканинних зрізів, розроблений О. Варбургом. З тканин, тільки що відокремлених від організму, готують тонкі зрізи, які негайно поміщають у відповідні розчини. Через деякий час в зрізах і розчинах вивчають продукти метаболізму. Інкубацію зрізів проводять в замкнутій системі з манометром при температурі 37 оC. Набувають поширення гістохімічні методи, за допомогою яких на препаратах мікроскопічно визначають тканинну локалізацію і вміст окремих речовин.

Матеріалом для біохімічних досліджень можуть служити клітини. Найоб'єктивніші дані по хімічній статиці і динаміці клітин дають кількісні цитохімічні методи, за допомогою яких на препаратах (мазках або відбитках) визначають в окремих клітинах кількість різних хімічних речовин. Цінну інформацію про обмін речовин можна отримати на клітинному рівні, використовуючи метод авторадіографії. Піддослідним тваринам вводять радіоактивні ізотопи, які включаються в реакцію асиміляції. Через деякий час піддослідних тварин вбивають, а з відповідних їх органів або тканин готують гістологічні препарати. Після певної обробки виявляють радіоактивний розпад ізотопів. Метод точний і дозволяє визначити в клітині до 50 – 60 атомів ізотопу.

Інформацію про обмін речовини на субклітинному рівні можна отримати, вивчаючи продукти фракціонування клітинних структур. Спочатку з відповідного матеріалу (шматочків органів або тканин) одержують гомогенат. На спеціальних приладах – ультрацентрифугах – одержують фракції і підфракції, які містять різні субклітинні структури, що і служать матеріалом для біохімічних досліджень.

Методи електронної гісто- і цитохімії дають можливість при збільшенні електронного мікроскопа 1 – 0,1 нм виявляти в субклітинних структурах локалізацію і кількість окремих хімічних речовин.

Комплексне використання методів дозволило розшифрувати ультраструктуру клітини – основного об'єкту дослідження живої матерії.

Виділення досліджуваних речовин з матеріалу. В матеріалі для біохімічного дослідження речовини рідко зустрічаються в чистому вигляді. Для розділення сумішей і виділення речовин у чистому вигляді застосовується ряд методів: перегонка, сублімація, випаровування, мікродифузія, фільтрація в гелях сефадексів, діаліз, кристалізація, екстракція, аналіз седиментації, електрофорез та ін. Багато які з цих методів основані на відмінності температури переходу речовини з одного агрегатного стану в інший, розділенні у зв'язку з неоднаковою величиною молекул або частинок, різної розчинності, різної реакційної здатності сполук, неоднакової швидкості седиментації, відмінності розподілу між рухомою і нерухомою фазами на основі неоднакової розчинності, величини сорбції молекул і електричного заряду, на неоднаковому електричному заряді молекул при певному значенні рН, на відмінності рухливості в електричному і магнітному полі комплексу речовини із зарядженими частинками, розділенні на основі різних імунних властивостей речовин та ін.

Основи методів кількісного аналізу. Методи кількісного аналізу, які використовуються в біохімії, основані на визначенні в тому або іншому субстраті кількості речовини за її екстенсивними властивостями (маса, об'єм) або фізичними, термічними, електричними, ядерними, хімічними, а також по взаємодії речовини з променистою енергією, дифракції рентгенівського проміння і електронів, випуску випромінювання та ін.

Класифікація біохімічних методів. Кількість біохімічних методів, які використовуються у теоретичній і прикладній біохімії, клінічній практиці і суміжних дисциплінах, величезне. Так, наприклад, для виявлення холестерину існує понад 100 біохімічних методів. Є декілька видів класифікацій. Найбільш прийнятна класифікація за способом підходу до визначення вмісту тієї або іншої речовини в субстраті.

Методи об'ємно-вагового аналізу. Принципи об'ємно-вагового аналізу є основою біохімічного дослідження. По кількості речовини в субстраті розрізняють: макрометоди – для аналізу береться 40 – 50 мл розчину або близько 500 мг сухої речовини; напівмікрометоди – об'єм досліджуваного розчину складає від 1 до 100 мл, маса сухої речовини – від 10 до 100 мг; мікрометоди – об'єм досліджуваного розчину – декілька десятих часток мілілітра, маса сухої речовини – декілька міліграмів; ультрамікрометоди – об'єм досліджуваного розчину менше 0,1 мл, маса сухої речовини менше 1 мг.

Об'ємно-ваговий аналіз оснований на кількісному визначенні об'єму або маси досліджуваної речовини. Це визначення проводиться зважуванням (для сухих речовин) або титруванням (для розчинів).

Методи об'ємно-вагового аналізу, основані на титруванні, ділять на чотири групи: ацидометричні, алкаліметричні, оксидометричні і осадження. Для першої групи як титруючий розчин застосовують розчин кислоти, другої – розчин лугу, третьої – окислювачі, четвертої – солі важких металів. Перші дві групи методів називають методами нейтралізації. Методом нейтралізації визначають, наприклад, загальний і залишковий азот по Кьельдалю, оксидометрією визначають цукор крові і т.д.

Кількісний вміст сухої речовини визначається гравіметричним методом. Наважку проби розчиняють, малорозчинний осад промивають, потім висушують або прожарюють до постійного значення маси, а потім визначають її величину. Прикладом може бути визначення маси казеїну в молоці.

Оптичні методи володіють високою чутливістю (вони виявляють у пробах вміст речовин у концентраціях менше 0,001 мг), специфічністю і точністю. Розрізняють п'ять основних груп оптичних методів: адсорбційні, нефелометричні і турбідиметричні, люмінесцентні, спектральні і поляриметричні.

Адсорбційні методи основані на визначенні кількості речовини в розчинах по інтенсивності поглинання ним світлової енергії. Залежно від використання світлової енергії розрізняють фотометрію і спектрофотометрію. Фотометрія включає власне фотометричні (візуальні і фотоелектроколориметричні) і колориметричні (стандартних серій і шкали, колориметричного титрування, порівняння) методи. Прикладом широкого використання цих методів в лабораторній практиці є визначення фосфору в сироватці крові фотоелектроколориметром по Фіску-Суббароу. Розрізняють три види спектрофотометрії: фотографічну, термоелектричну і фотоелектричну. В біохімії найчастіше використовується фотоелектрична спектрофотометрія, наприклад визначення нуклеїнових кислот спектрофотометрами.

Нефелометричні і турбідиметричні методи (візуальні і об'єктивні) основані на вимірюванні інтенсивності світлового потоку, розсіяного суспензіями окремих речовин. При нефелометрії вимірюється інтенсивність розсіяного світлового потоку в напрямі, перпендикулярному до падаючого світлового потоку. При турбідиметрії вимірюється інтенсивність світлового потоку, який пройшов через кювету з розчином, що вивчається, у напрямі падаючого світлового потоку. Ці методи застосовуються при визначенні в різних розчинах вмісту білків, амінокислот, деяких вітамінів і інших речовин. Наприклад, фотоелектроколориметрами-нефелометрами визначають вміст альбумінів і глобулінів в сироватці крові.

Люмінесцентний аналіз володіє високою чутливістю (від 0,0001 до 1000 мкг), специфічністю виявлення мінімальних кількостей речовин, яскравістю і контрастністю. Він оснований на здатності окремих речовин спочатку поглинати, а потім випромінювати світлову енергію. Деякі речовини володіють власною (первинною) люмінесценцією (вітаміни групи А, ліпофусцин, амілоїди, бензопірен). У інших сполук ця властивість виникає після обробки їх флуорохромами (вторинна люмінесценція). Метод використовується для визначення вмісту вітаміну В1 в сечі електронним флуориметром по Вангу і Харрісу та ін.

Спектральний аналіз дає можливість вивчати якісний і кількісний склад молекул і атомів різних речовин на основі визначення спектрів поглинання або випускання світлової енергії. Розрізняють декілька видів спектрального аналізу – емісійний, адсорбційний і комбінаційний. У клініці широко застосовується полум’яно-фотометричний метод визначення натрію, калію і кальцію в сироватці крові по Габшу.

Поляриметричний аналіз оснований на здатності оптично активних речовин в розчині обертати площину поляризованого світла. У складі молекули такої речовини є асиметричні атоми вуглецю. Як приклад назвемо визначення вмісту глюкози в сечі поляриметром або глюкозиметром.

Хроматографічні методи. Найчастіше використовуються як попередні методи біохімічного аналізу. Так, цими методами з різних сумішей виділяють речовини в чистому вигляді, а потім іншими методами (головним чином, об'ємно-ваговими і оптичними) визначають їх кількісний вміст. Методи були розроблені і введені російським ботаніком M.С. Цветом у 1903 р.

Залежно від середовища, де проводиться розділення, розрізняють газову, газорідинну і рідинну хроматографію; залежно від механізму розділення – адсорбційну (молекулярну), розподільну, іонообмінну, осадову, окисно-відновну, адсорбційно-комплексоутворюючу; залежно від методу проведення – колоночну, капілярну, площинну (паперову і в тонкому шарі); залежно від мети дослідження – аналітичну, препаративну і промислову. Методи хроматографії часто застосовують спільно з методами електрофореза для виділення і очищення різних речовин з сумішей (наприклад, якісне і кількісне визначення амінокислот в сироватці крові за допомогою хроматографії).

Методи електрофореза. Застосовуються для розділення білків на окремі фракції (альбуміни, a-, b-, g-глобуліни) і підфракції, а також для виділення ізоферментів та інших речовин з біологічних рідин і штучних розчинів. Розрізняють препаративний і кількісний електрофорез. Препаративний електрофорез застосовується для розділення сумішей речовин в газовому і рідкому середовищах. Кількісний електрофорез використовується для визначення кількості речовин після їх розділення. В біохімічних дослідженнях часто використовуються зональний фронтальний (або вільний) електрофорез, мікроскопічний та імуноелектрофорез. Залежно від природи носія зональний електрофорез може проводитися на папері, в гелях, в блоках і т.д. В клініці часто проводиться електрофоретичне визначення білкових фракцій сироватки крові на папері. У ряді випадків застосовується універсальний прилад для імуноелектрофореза і електрофореза білків (УЕФ), за допомогою якого білки розділяють на агар-агарі, папері, крохмалі, проводячи потім їх кількісне визначення.

Методи полярографії. Це група електрохімічних методів, основаних на явищі дифузійного струму, величина якого пропорційна концентрації речовини, що обумовлює цей струм. Розрізняють постійнострумову, зміннострумову, високочастотну, імпульсну і осцилографічну полярографію. Методи використовуються для ранньої діагностики хвороб серцево-судинної системи, визначення вмісту в тканинах кисню і мікроелементів, оцінки якості м'яса та ін. В клініці застосовується полярографічний метод визначення вмісту фосфору в сироватці крові (за M.О. Кондрашовою).

Манометрові методи. Основані на вимірюванні тиску рідин або газів манометрами. Використовується для вимірювання тиску газів (найчастіше CO2 і O2) під час їх поглинання або утворення при постійній температурі і об'ємі в закритій системі. Застосовуються при вивченні тканинного обміну, різних видів бродіння, дослідженні газообміну між кров'ю і тканинами, визначенні ряду продуктів проміжного обміну, амінокислот, активності окремих ферментативних систем і т.д. Прикладом може бути метод визначення окислювального фосфорилування по Варбургу.

Інші методи біохімічних досліджень. Окрім розглянутих, в біохімії застосовуються методи ультрацентрифугування і радіоактивних ізотопів. В першому випадку використовуються ультрацентрифуги, що дають від 20000 до 200000 об/хв. Методи ділять на декілька видів: визначення швидкості седиментації, рівноваги седиментації і метод диференційного центрифугування. Вони дають можливість отримати окремі фракції і підфракції клітин і тканин, хімічний склад яких вивчається різноманітними методами об'ємно-вагового, оптичного, полярографічного і інших аналізів.

При використанні методу радіоактивних ізотопів піддослідній тварині ін'єкцією або з кормом вводиться мічений попередник, після чого він включається в реакції обміну речовин.

Радіоактивний розпад мічених атомів потім уловлюється радіометрами. В лабораторній практиці застосовується метод визначення оновлення фосфору білків.

Статистична обробка результатів біохімічних досліджень. Цифрові дані, отримані різними біохімічними методами, піддаються статистичній обробці. Така обробка дозволяє об'єктивно оцінити результати досліджень. Існує ряд методів статистичної обробки, які приводяться в керівництві по використанню біохімічних методів. Після статистичної обробки приступають до узагальнення результатів біохімічних досліджень. Узагальнення відображаються в таблицях, графіках, діаграмах і інших матеріалах. На підставі цього формулюються висновки про закономірності явищ, що вивчаються, – біохімічній статиці і динаміці живих організмів.

ХІМІЧНИЙ СКЛАД ТВАРИННОГО ОРГАНІЗМУ

Хімічні елементи. З відомих 115 хімічних елементів в живих організмах було виявлено близько 70. Частина з них постійно знаходиться в тканинах всіх тваринних організмів, незалежно від рівня їх організації. Це С, N, H, О, S, P, К, Ca, Mg, Zn, Fe, Mn, Cu і Со. Решта хімічних елементів (Mo, В, U, Na, I, Cl та ін.) виявляються в тканинах окремих видів організмів і відносяться до категорії елементів, що інколи зустрічаються:

Елемент

Середній вміст

в організмі

тварини, %

Елемент

Середній вміст в організмі

тварини, %

Кисень

62,43

Магній

0,027

Вуглець

21,15

Йод

0,014

Водень

9,86

Фтор

0,009

Азот

3,10

Залізо

0,005

Кальцій

1,90

Цинк

0,003

Фосфор

0,95

Бром

0,002

Калій

0,23

Алюміній

0,001

Сірка

0,08

Кремній

0,001

Хлор

0,08

Мідь

0,00015

Натрій

0,080

Хімічні елементи беруть неоднакову участь в побудові живої матерії. Частина з них є макроелементами О, С, H, Ca, К, N, P, S, Mg, Na, Cl і Fe), вміст їх в організмі перевищує 0,001%, частина – мікроелементами (Cu, Mn, Zn, W, Co та ін.), їх вміст в організмі коливається від 0,001 до 1%, частина – ультрамікроелементами (Pb, V, Au, Hg та ін.), їх частка складає менше 0,000001% загальної маси організму.

Елементарний склад живих організмів в основному представлений елементами, здатними утворювати легкорухомі хімічні сполуки. В живих організмах, як правило, міститься п'ять хімічних елементів – С, О, H, N і P. Вони мають невелику атомну масу, здатні утворювати кратні зв'язки, беруть участь в утворенні пластичних і високоенергетичних речовин. Деякі хімічні елементи локалізуються в певних органах і тканинах. Наприклад, кальцій локалізується в кістковій тканині, залізо – в крові, цинк – в гіпофізі, йод – в щитовидній залозі, мідь – в печінці, фтор – в зубах, стронцій – в шерсті і шкірі. Вміст різних хімічних елементів в організмі визначається багатьма чинниками: зоною існування, видом і віком тварини, раціоном, порою року і фізіологічним станом і т.д.

Групи речовин. Тіло тварини складається з неорганічних і органічних речовин. Неорганічні речовини представлені водою (60 – 65% загальної маси організму) і мінеральними речовинами. Вода є основним учасником реакцій обміну речовин. Мінеральні речовини представлені в основному у вигляді іонів, за винятком деяких органів і тканин, в яких вони знаходяться у вигляді солей (наприклад, в кістках утворюються солі кальцію і фосфору). Вміст мінеральних речовин може досягати 10% загальної маси організму. Решта частини сухого залишку органів і тканин має органічне походження. Білки складають 40 – 50% всіх органічних речовин, нуклеїнові кислоти, ліпіди, вуглеводи і інші речовини – 50 – 60%. Середній хімічний склад тіла хребетних приблизно такий, %: вода – 65,9; білки – 16,8; ліпіди – 10,5; мінеральні речовини – 5,6; вуглеводи й інші продукти обміну – 1,2.

Біологічні структури. Організм тварини складається з органів, органи – з тканин, тканини – з клітин. Їх хімічний склад показаний в таблиці 1.

Таблиця 1.

Хімічний склад деяких органів і тканин, % (по С. M. Рапопорту)

Орган, тканина

Вода

Білки

Ліпіди

Мінеральні

речовини

Шкіра

58

27

14

0,6

Скелет

28

20

25

27

М'язи

70

22

6

1

Жирова тканина

23

6

71

0,2

Печінка

71

22

3

1,4

Мозок

75

11

12

1,4

Клітина – елементарна жива система, структурна і функціональна одиниця організму людини, тварини і рослини. В організмі людини налічується до 30 більйонів різних клітин. Клітина має складний молекулярний склад (табл.2).

Таблиця 2.

Хімічний склад живої клітини (по О. Гізе)

Речовина

Вміст,

%

Середня молекулярна маса

Число молекул

на молекулу ДНК

Вода

85

18

1,2 • 107

Білки

10

36000

7,0 • 102

ДНК

0,4

106

1,0

РНК

0,7

4,0 • 104

4,4 • 101

Ліпіди

2

700

7,0 • 103

Інші органічні речовини

0,4

250

4,0 • 103

Мінеральні речовини

1,5

55

6,8 • 104

Таким чином, в клітині на одну молекулу ДНК доводиться в середньому 44 молекули РНК, 700 молекул білка і 7000 молекул ліпідів. Наприклад, гепатоцит щура має масу 2,1 • 10-3 мкг, вода складає 1,3, білок – 0,44, глікоген – 0,12, ліпіди – 0,12, нуклеїнові кислоти – 0,03, мінеральні речовини – 0,02, залізо – 0,0003 мкг.

БІОЛОГІЧНІ МЕМБРАНИ 

Всі живі клітини відокремлені від навколишнього середовища поверхнею, яка називається клітинною мембраною. Крім того, для еукаріотів характерним є утворення усередині клітин декількох компартментів. Вони представлені рядом субклітинних органел, обмежених мембранами, наприклад, ядро і мітохондрії. Мембрани – це не тільки статично організовані поверхні розділу, вони також включають активні біохімічні системи, що відповідають за такі процеси, як вибірковий транспорт речовин всередину і назовні клітини, зв’язування гормонів і інших регуляторних молекул, протікання ферментативних реакцій, передача імпульсів нервової системи і т.д. Існують різні типи мембран, які відрізняються за функціями, які вони виконують. Функції мембран обумовлені їх будовою (рис. 1).

Рис. 1. Функції мембран

Хімічний склад. Мембрани складаються з ліпідних і білкових молекул, відносна кількість яких варіює (від 1/5 – білок + 4/5 – ліпіди до 3/4 – білок + 1/4 – ліпіди) у різних мембран. Вуглеводи містяться у формі глікопротеїнів, гліколіпідів і складають 0,5 – 10% речовини мембрани.

Ліпіди мембран. Основна частина ліпідів в мембранах представлена фосфоліпідами, гліколіпідами і холестерином:

Будова ліпідів мембран. Ліпіди мембран мають в структурі дві різні частини: неполярний гідрофобний „хвіст” і полярну гідрофільну „голову”. Таку подвійну природу сполук називають амфіфільною. Ліпіди мембран утворюють двошарову структуру. Кожний шар складається з складних, розташованих таким чином ліпідів, що неполярні гідрофобні „хвости” молекул знаходяться в тісному контакті один з одним. Так само контактують гідрофільні частини молекул. Всі взаємодії мають нековалентний характер. Два моношари орієнтуються „хвіст до хвоста” так, що структура подвійного шару, який утворюється, має внутрішню неполярну частину і дві полярні поверхні. Білки мембран включені в ліпідний подвійний шар двома способами:

Зв'язані з гідрофільною поверхнею ліпідного бішару – поверхневі мембранні білки;

Занурені в гідрофобну область бішару – інтегральні мембранні білки.

Поверхневі білки своїми гідрофільними радикалами амінокислот зв'язані нековалентними зв'язками з гідрофільними групами ліпідного бішару. Інтегральні білки розрізняються за ступенем зануреності в гідрофобну частину бішару. Вони можуть розташовуватися по обох сторонах мембрани і (або) частково занурюються в мембрану, або прошивають мембрану наскрізь. Занурена частина інтегральних білків містить велику кількість амінокислот з гідрофобними радикалами, які забезпечують гідрофобну взаємодію з ліпідами мембран. Гідрофобні взаємодії підтримують певну орієнтацію білків у мембрані. Гідрофільна виступаюча частина білка не може переміститися в гідрофобний шар. Частина мембранних білків ковалентно зв'язується з моносахаридними залишками або олігосахаридними ланцюгами – глікопротеїни. Приклади розташування білків і ліпідів в мембрані представлені на рисунку 2.

Рис. 2. Структура плазматичної мембрани

Асиметрія мембран. Хоча кожний моношар утворений з ліпідів, орієнтованих однаково, проте, ліпідний склад моношарів розрізнений. Наприклад, в плазматичній мембрані еритроцитів фосфатидилхоліни переважають в зовнішньому шарі, а фосфатидилсерини у внутрішньому шарі мембрани. Вуглеводні частини білків і ліпідів розташовуються на зовнішній частині мембрани. Крім того, поверхні мембрани відрізняються за складом білків. Ступінь такої асиметрії мембран різний у різних типів мембран і може змінюватися в процесі життєдіяльності клітини і її старіння. Рухливість (жорсткість) і текучість мембран також залежать від її складу. Підвищена жорсткість обумовлюється збільшенням співвідношення насичених і ненасичених жирних кислот, а також холестерину. Фізичні властивості мембран залежать від розташування білків в ліпідному шарі. Ліпіди мембран здатні до дифузії в межах шару паралельно поверхні мембрани (латеральна дифузія). Білки теж здатні до латеральної дифузії. Поперечна дифузія в мембранах дуже обмежена.

Мембранний транспорт. Транспорт речовин всередину і назовні клітини, а також між цитоплазмою і різними субклітинними органелами (мітохондріями, ядром і т.д.) забезпечується мембранами. Якби мембрани були глухим бар'єром, то й внутрішньоклітинний простір виявився б неприступним для поживних речовин, а продукти життєдіяльності не могли б видалятися з клітини. В той же час при повній проникності було б неможливе накопичення певних речовин в клітині. Транспортні властивості мембрани характеризуються напівпроникністю: деякі речовини можуть проникати через неї, а інші – ні (рис. 3).

Рис. 3. Проникність мембран для різних речовин

Одна з головних функцій мембран – регуляція перенесення речовин. Існують два способи перенесення речовин через мембрану: пасивний і активний транспорт (рис. 4).

Пасивний транспорт. Якщо речовина рухається через мембрану з області з високою концентрацією у бік низької концентрації (тобто за градієнтом концентрації цієї речовини) без витрати клітиною енергії, то такий транспорт називається пасивним, або дифузією. Розрізняють два типи дифузії: просту і полегшену.

Проста дифузія характерна для невеликих нейтральних молекул (H2O, CO2, O2), а також гідрофобних низькомолекулярних органічних речовин. Ці молекули можуть проходити без якої-небудь взаємодії з мембранними білками через пори або канали мембрани до тих пір, поки зберігатиметься градієнт концентрації.

Рис. 4. Транспорт речовин через мембрани

Полегшена дифузія. Характерна для гідрофільних молекул, які переносяться через мембрану також за градієнтом концентрації, але за допомогою спеціальних мембранних білків-переносників. Для полегшеної дифузії, на відміну від простої, характерна висока вибірковість, оскільки білок переносник має центр скріплення комплементарний речовині, що транспортується, і перенесення супроводжується конформаційними змінами білка. Один з можливих механізмів полегшеної дифузії може бути таким: транспортний білок (транслоказа) зв'язує речовину, потім зближується з протилежною стороною мембрани, звільняє цю речовину, приймає початкову конформацію і знов готовий виконувати транспортну функцію. Мало відомо про те, як здійснюється пересування самого білка. Інший можливий механізм перенесення припускає участь декількох білків-переносників. В цьому випадку спочатку зв'язана сполука сама переходить від одного білка до іншого, послідовно зв'язуючись то з одним, то з іншим білком, поки не виявиться на протилежній стороні мембрани.

Активний транспорт має місце у тому випадку, коли перенесення здійснюється проти градієнта концентрації. Таке перенесення вимагає витрати енергії клітиною. Активний транспорт служить для накопичення речовин усередині клітини. Джерелом енергії часто є АТФ. Для активного транспорту окрім джерела енергії необхідна участь мембранних білків. Одна з активних транспортних систем в клітині тварин відповідає за перенесення іонів Na+ і K+ через клітинну мембрану. Ця система називається Na+- K+- насос. Вона відповідає за підтримку складу внутрішньоклітинного середовища, в якому концентрація К+ вище, ніж Na+ (рис. 5).

Рис. 5. Механізм дії Na+, K+-АТФ-ази

Градієнт концентрації калія і натрія підтримується шляхом перенесення К+ всередину клітини, а Na+ назовні. Обидва види транспорту відбуваються проти градієнта концентрації. Такий розподіл іонів визначає вміст води в клітинах, збудливість нервових клітин і клітин м'язів і інші властивості нормальних клітин. Na+-K+-насос – білок – транспортної АТФ-ази. Молекула цього ферменту є олігомером і пронизує мембрану. За повний цикл роботи насоса з клітини в міжклітинну речовину переноситься три іони Na+, а у зворотному напрямі – два іони К+. При цьому використовується енергія молекули АТФ. Існують транспортні системи для перенесення іонів кальцію (Са2+-АТФ-ази), протонні насоси (Н+-АТФ-ази) та ін. Симпорт – це активне перенесення речовини через мембрану, яке здійснюється за рахунок енергії градієнта концентрації іншої речовини. Транспортна АТФ-аза в цьому випадку має центри скріплення для обох речовин. Антипорт – це переміщення речовини проти градієнта своєї концентрації. При цьому інша речовина рухається в протилежному напрямі за градієнтом своєї концентрації. Симпорт і антипорт можуть відбуватися при всмоктуванні амінокислот з кишечника і реабсорбції глюкози з первинної сечі. При цьому використовується енергія градієнта концентрації іонів Na+, яка створюється Na+-K+-АТФ-азою.

Основні поняття і терміни біологічної хімії

Обмін речовин і енергії є однією з найважливіших і найсуттєвіших ознак живого організму. Живі організми – відкриті системи, для існування яких необхідний постійний двосторонній зв'язок (обмін) з навколишнім середовищем. З навколишнього середовища вони одержують поживні речовини та енергію, перетворюють їх, видозмінюють, використовуючи утворені сполуки для власних потреб, та повертають в навколишнє середовище кінцеві продукти обміну. Вся сукупність процесів поглинання, засвоєння речовин з навколишнього середовища та утворення і виділення кінцевих продуктів – суть обміну речовин.

Умовно обмін речовин включає такі рівні: загальний, проміжний та внутрішньоклітинний. Загальний обмін включає процеси надходження поживних речовин в організм, їх перетворення і виділення продуктів обміну. Проміжний обмін – це перетворення речовин в організмі з моменту надходження їх до утворення кінцевих продуктів обміну. Внутрішньоклітинний обмін – це перетворення речовин після всмоктування. Оскільки, за винятком процесів перетравлювання і всмоктування, а також утворення деяких міжклітинних рідин і мінеральних речовин у кістковій тканині, всі інші процеси відбуваються в клітинах організму, то поняття проміжного і внутрішньоклітинного обміну майже співпадають. Загальний обмін складається з проміжного і внутрішньоклітинного. Специфічними функціями обміну речовин є вбирання (акумуляція) енергії з навколишнього середовища, яка потрапляє у формі хімічних сполук або у вигляді енергії сонячного випромінювання і перетворення екзогенних сполук для синтезу біополімерів, властивих даному організму, та вилучення енергії. Енергія необхідна для процесів синтезу і виконання різних специфічних функцій, властивих живому, для росту, розвитку, руху, секреції, подразливості, скоротливості.

Обмін речовин складається з фізіологічних (травлення, всмоктування, виділення) і фізичних (сорбція, дифузія, осмос), хімічних (окислення, відновлення, гідроліз, фосфороліз) процесів, які здійснюються при проміжному та внутрішньоклітинному обміні. Особливе місце серед них належить хімічним перетворенням органічних сполук, різноманітність яких зводиться до двох основних реакцій – синтезу та розщеплення. Реакції синтезу відбуваються в напрямі ускладнення молекул, що приводить до перетворення простих сполук на складніші. Це так звані анаболічні реакції (від лат. anabole – синтез). Реакції розщеплення характеризуються протилежним процесом – розщепленням складних сполук з утворенням простіших. Це так звані катаболічні реакції (від лат. katabole – розклад), тобто обмін речовин можна розглядати як діалектичну єдність двох протилежних і взаємопов'язаних процесів – розщеплення і синтезу – асиміляції і дисиміляції.

Асиміляція – це частина загального обміну, що супроводжується поглинанням органічних сполук з навколишнього середовища, засвоєнням, перетворенням та синтезом за їх рахунок різних структур організму. Цей процес включає численні хімічні реакції та перетворення органічних сполук, які забезпечують використання організмом поживних речовин. Асиміляція супроводжується анаболічними реакціями, які забезпечують синтез складних органічних сполук. Основними анаболічними реакціями є реакції відновлюючого синтезу, які супроводжуються використанням енергії, тобто є ендергонічними.

Дисиміляція – це частина загального обміну, в процесі якого відбувається руйнування та розщеплення складних органічних сполук, які потрапляють з продуктами харчування, та тих, що входять до складу власних структур організму – білків, вуглеводів, ліпідів з утворенням простіших сполук та кінцевих продуктів обміну. Органічні сполуки, що потрапляють з продуктами харчування, перетворюються за участю численних ферментів до простіших сполук. Певна послідовність ферментативних перетворень називається метаболізмом (від лат. metabole – перетворення). Речовини, що утворюються в процесі метаболізму, називаються метаболітами. Інколи поняття метаболізм ототожнюється з поняттям обміну, оскільки з хімічної точки зору метаболізм – це сукупність різноманітних ферментативних реакцій окислення, відновлення, гідролізу та ін.

Для дисиміляції характерні катаболічні реакції, які супроводжуються виділенням енергії, тобто є екзергонічними. Основними катаболічними реакціями, що здійснюються при дисиміляції, є гідроліз, фосфороліз та окислення.

У процесі еволюції в живих організмах сформувались певні регуляторні механізми, які забезпечують високий ступінь упорядкованості та узгодженості процесів, що в них здійснюються. Дані регуляторні механізми діють на різних рівнях – клітинному, метаболічному, організменному – і є спільними для всіх живих організмів. Координація та взаємоузгодженість процесів асиміляції і дисиміляції, інтенсивність та направленість біохімічних перетворень переважно регулюються шляхом зміни активності ферментних систем та за участю інших регуляторних механізмів (нервових та гуморальних), що забезпечує динамічну рівновагу між організмом та навколишнім середовищем.

Обмін речовин в організмі тісно пов'язаний з обміном енергії. Постійне надходження та використання енергії є необхідною умовою існування живих організмів як відкритих систем. За рахунок надходження енергії забезпечується підтримання стабільного, впорядкованого стану живої системи, що запобігає дезорганізації, хаосу та її загибелі.

Залежно від способу вилучення енергії всі живі організми поділяють на фото- і хемотрофи. Фототрофи у вигляді джерела енергії використовують енергію квантів світла (зелені рослини, водорості, деякі бактерії). Дані організми синтезують складні органічні сполуки з неорганічних (СО2 і Н2О) за рахунок енергії сонячного випромінювання, тобто вони здатні до сприймання і перетворення енергії електромагнітних коливань потоку сонячного випромінювання на енергію хімічних зв'язків органічних сполук. За типом живлення дані організми належать до аутотрофних (від грец. aytos – сам, trofos – живлення). Хемотрофні організми у вигляді джерела енергії використовують енергію окислення органічних чи неорганічних сполук. У першому випадку їх відносять до органотрофів, а в другому – до літотрофів. За типом живлення хемотрофні організми є гетеротрофами (від грец. heteros – інший і trofos – живлення). Гетеротрофи не можуть синтезувати складні органічні сполуки з неорганічних і використовувати їх в готовому вигляді. До гетеротрофів належать організми людини, тварин та деякі мікроорганізми.

Обмін енергії включає такі процеси, як виділення, перетворення, акумулювання та використання енергії організмом, тобто обмін речовин в організмі супроводжується постійним обміном енергії завдяки тісному взаємозв'язку анаболічних реакцій, характерних для асиміляції, та катаболічних реакцій, характерних для дисиміляції.

Анаболічні реакції, як і катаболічні, складаються з кількох стадій. Синтез складних органічних сполук починається з простих метаболітів, що утворюються в процесі розкладання. При цьому спочатку синтезуються прості сполуки (мономери), які далі перетворюються підчас складних ферментативних реакцій на важливі біополімери клітини – білки, вуглеводи, ліпіди. Синтез складних органічних сполук відбувається з використання енергії АТФ. Тісний взаємозв'язок між анаболічними і катаболічними реакціями здійснюється на кількох рівнях: 1) на рівні джерел вуглецю (кінцеві продукти катаболізму часто є вихідними сполуками анаболічних реакцій); 2) на рівні відновних еквівалентів (при аеробному окисленні нагромаджуються відновні еквіваленти, які використовуються для відновлюючого синтезу складних органічних сполук); 3) на енергетичному рівні (при катаболізмі виділяється та нагромаджується (акумулюється) енергія, яка може бути використана для процесів синтезу).

Анаболічні та катаболічні реакції спряжені за рахунок так званих амфіболічних (об'єднуючих) шляхів метаболізму, одним з яких є цикл Кребса. Треба зазначити, що анаболічні та катаболічні реакції на окремих етапах не співпадають і каталізуються різними ферментними системами.

В організмі існує тісний взаємозв'язок між процесами звільнення та використання енергії. Основна маса енергії, акумульованої в хімічних зв'язках органічних сполук, виділяється при катаболізмі на другому і третьому етапах (анаеробне та аеробне окислення). Однак виділена енергія не використовується безпосередньо для потреб організму, а попередньо перетворюється на доступну форму. Такою універсальною сполукою є АТФ, яка може бути в ролі донора, акцептора та трансформатора енергії. Однак енергія окислення органічних сполук на АТФ не передається, оскільки в клітині безпосередня передача енергії від низько- до високоенергетичних сполук не відбувається. Цей процес здійснюється за участю посередників – макроергічних сполук, які утворюються під час окислення субстратів, і нагромаджують енергію окислення в макроергічних зв'язках.

Макроергічні зв'язки – це зв'язки, при перетворенні яких рівень зміни вільної енергії становить понад 20 кДж/моль. Макроергічні зв'язки позначають знаком тільда (~).

Лекція № 2. Біогенні вуглеводи.

Загальна характеристика, будова та функції вуглеводів

Вуглеводи – органічні сполуки, які найчастіше складаються з трьох хімічних елементів – вуглецю, водню і кисню. Відомі багато сполук, що містять, окрім цих трьох елементів, також фосфор, сірку і азот.

Вуглеводи широко поширені в природі. Вони утворюються в рослинах у результаті реакцій фотосинтезу і складають 80 – 90% їх сухої маси. В організмі тварин вуглеводи піддаються механічній і хімічній переробці. В середньому в організмі тварин міститься 1 – 2% вуглеводів в перерахунку на суху речовину.

Значення вуглеводів багатогранно. Так, вони є основою структури рослинної клітини, використовуються в енергетичних процесах і відкладаються у вигляді запасних поживних речовин (крохмаль). В організмі тварин і людини є головним джерелом хімічної енергії. Окремі органи задовольняють свої потреби в основному в результаті розщеплення глюкози: головний мозок – на 80%, серце – на 70 – 75%. Вуглеводи відкладаються в тканинах тваринного організму у вигляді запасних поживних речовин (глікоген). Деякі з них виконують опорні функції (гіалуронова кислота), беруть участь в захисних функціях, затримують розвиток мікробів (мукополісахариди слизу), служать хімічною основою для побудови молекул біополімерів, є складовими частинами макроергічних сполук і т.д.

За хімічними властивостями вуглеводи є альдегідо- і кетоспиртами. За будовою вуглеводи ділять на дві групи – прості, або моносахариди, і складні, або, полісахариди.

А. Моносахариди

Моносахариди класифікують за наявністю альдегідної або кетонної групи (альдози і кетози), числом вуглецевих атомів (тріози, тетрози, пентози, гексози і т.д.) і за хімічною природою (нейтральні і кислі цукри, аміноцукри).

Моносахариди – білі кристалічні речовини, добре розчинні у воді, солодкі на смак, оптично активні, вступають у хімічні реакції, характерні для альдегідо- або кетоспиртів, легко виявляються якісними і кількісними реакціями (Троммера, Селіванова, срібного дзеркала та ін.), піддаються різним видам бродіння. Окремим з них належить важлива роль в реакціях обміну речовин.

Тріози. Загальна формула – C3H6O3. За хімічними властивостями є альдегідо- і кетоспиртами:

Містяться в тканинах і біологічних рідинах у вигляді складних ефірів з ортофосфорною кислотою, як продукти проміжного обміну вуглеводів при реакціях гліколізу і бродіння.

Тетрози. Загальна формула – C4H8O4. За хімічними властивостями діляться на альдози і кетози. Найбільше значення має еритроза, яка міститься в тканинах у вигляді ефіру з ортофосфорною кислотою – продукту пентозного циклу окислення вуглеводів:

Пентози. Загальна формула – C5H10O5 (за винятком дезоксирибози, формула якої C5H10О4). Більшість пентоз утворюється в харчовому каналі тварин у результаті гідролізу пентозанів рослин:

nH2O + (C5H8O4)n ® nC5H10O5

Частина пентоз утворюється в результаті проміжного обміну (пентозному циклі). В тканинах пентози знаходяться у вільному стані, у вигляді ефірів ортофосфорної кислоти, входять до складу макроергічних сполук (АТФ), нуклеїнових кислот, коферментів (НАДФ, ФАД) та інших біологічно важливих сполук. До них належать:

Пентози в тканинах найчастіше знаходяться в циклічній формі, яку прийнято зображати формулами Коллі-Толленса або Хеуорса:

L(+)-Aрабіноза. Входить до складу плодів, є продуктом гідролізу бурякового жому, рослинного слизу, пектинових речовин, геміцелюлози, гуміарабіку, полісахаридів деяких бактерій (туберкульозної палички). Оптично активна (+105,5°).

D(+)-Ксилоза. Утворюється в харчовому каналі при гідролізі ксиланів, полісахаридів соломи, кукурудзи, висівок та ін. Знайдена у складі полісахаридно-білкових комплексів тканин. Використовується як поживне середовище при вирощуванні кормових дріжджів. Оптично активна ( + 18,8°).

D(+)-Pибоза. Як і інші моносахариди, існує у вигляді двох оптичних антиподів (D і L) і неактивного рацемата. Особливістю рибози є високий вміст (8,5%) ациклічної форми. Обов'язкова складова частина РНК, нуклеотидів, нуклеозидів, деяких коферментів і бактерійних полісахаридів. Утворюється в травному тракті при гідролізі цих речовин, в тканинах – у результаті функціонування пентозного циклу. Оптично активна (+23,7°).

D(+)-Дезоксирибоза. Є обов'язковою складовою частиною ДНК. Утворюється в харчовому каналі при гідролізі кормів, багатих на ДНК, а також в результаті розщеплення гексоз в пентозному циклі. Оптично активна (a-D(+)-рибоза – +55°, b-D(+)-рибоза –58°).

D(+)-Ксилулоза. Утворюється в тканинах при пентозному циклі. Виявляється у вигляді ксилулозо-5-фосфата, донатора двовуглецевих груп у міжмолекулярних реакціях проміжного обміну вуглеводів. Бере участь в біосинтезі нуклеїнових кислот.

Гексози. Загальна формула гексоз – C6H12O6. Зустрічаються у вільному стані, у складі різних полісахаридів та інших сполук. Діляться на альдо- і кетогексози. У водних розчинах існують у вигляді декількох таутомерних (ациклічних і циклічних) D- і L-форм, а також рацематів. В природі переважають D-форми:

Циклічна форма виникає в результаті таутомерії ациклічної форми моносахариду і зображається у вигляді п’ятичленних (фуранозних) або шестичленних (піранозних) кілець, а також в „перспективному вигляді”:

У результаті таутомерії утворюється глюкозидний гідроксил, який володіє високою реакційною здатністю. Альдогексози і альдопентози можуть існувати в п'яти різних ізомерних формах, наприклад:

D(+)-Глюкоза. Широко поширена в природі. Зустрічається у вільному і зв'язаному станах. Входить до складу овочів і фруктів. Виноград містить 17 – 20% глюкози (звідси назва виноградний цукор). Складова частина оліго- і полісахаридів. Глюкоза поступає в організм у складі кормів, утворюється при гідролізі складних вуглеводів і в результаті неоглікогенеза. Глюкоза – обов'язкова складова частина крові людини і тварин. Розчини глюкози використовуються в медицині і ветеринарії для внутрішньовенних ін'єкцій.

Глюкоза існує у вигляді a-D(+)- і b-D(+)-глюкози (питоме обертання +113 і +19°), а також рацемата двох правих ізомерів (питоме обертання +52,7°) у водному розчині. В організмі тварин знаходяться похідні глюкози – глюконова і глюкуронова кислоти, глюкозамін, а при окисленні глюкози азотною кислотою утворюється цукрова кислота.

Фосфорні похідні глюконової кислоти є проміжними продуктами пентозного циклу, глюкуронова кислота зустрічається у вільному стані в крові і сечі, бере участь в нейтралізації отруйних продуктів обміну речовин (фенолу, скатолу, індолу та ін.), які виводяться з сечею у вигляді парних сполук. Крім того, глюкуронова кислота входить до складу мукополісахаридів. D-Глюкозамін є складовою частиною глікопротеїдів, мукополісахаридів і хітину.

D(+)-Галактоза. Зазвичай утворюється в результаті гідролізу в харчовому каналі оліго- і полісахаридів їжі. Входить до складу лактози, галактогена, мукопротеїдів, деяких ліпідів і бактерійних полісахаридів. Оптично активна (питоме обертання a-D(+)-галактози – +80,2°). Зброджується лактозними дріжджами. Може служити сировиною для перетворення в глюкозу або у вітамін С. При окисленні галактози утворюється галактуронова кислота – складова частина камеді, слизу, пектинових речовин. При взаємодії галактози і аміаку утворюється галактозамін, з якого синтезується хондроітинсірчана кислота. Похідними галактози є галактонова і слизова кислоти:

Галактоза є поживним середовищем для деяких мікробів. Використовується в кондитерській промисловості.

D(+)-Mаноза. У вільному стані зустрічається рідко (в плодах цитрусових, анакардієвих і каринокарпових). В організмі тварин утворюється в результаті гідролізу мананів кормів. Маноза – складова частина полісахаридів деяких бактерій, дріжджів і цвілевих грибів; входить до складу слизу харчового каналу, слини, глікопротеїдів крові. В природі існує у вигляді D(+)-форми. Питоме обертання манози – +14,2°. Зброджується дріжджами. Використовується як поживне середовище для деяких мікроорганізмів.

D(–)-Фруктоза. У вільному стані зустрічається у фруктах, овочах і, особливо, в медові (40 – 42%). Є складовою частиною сахарози, стахіози і фруктозанів. В організмі тварин утворюється в результаті гідролізу складних цукрів у харчовому каналі. В тканинах може таутомеризуватися в глюкозу і інші моносахариди, необхідні для організму. Її ефіри (фруктозо-6-фосфат і фруктозо-1,6-дифосфат) є проміжними продуктами вуглеводного обміну. Обертає площину поляризованого світла вліво на –92° (тому її часто називають левулозою). Існує в ациклічній і циклічній формах:

Гептози. Загальна формула – C7H14O7. Діляться на альдози і кетози. Є складовою частиною деяких полісахаридів, зокрема, грамнегативних мікробів. Особливий інтерес представляють кетогептози, знайдені в листі деяких рослин, в проміжних продуктах фотосинтезу і пентозного циклу:

Похідні моносахаридів. Серед похідних моносахаридів важливу групу сполук становлять аміноцукри.

Аміноцукри. Це похідні вуглеводів, які утворюються в результаті заміщення однієї або кількох гідроксильних груп аміногрупою. В організмах людини і тварин часто зустрічаються гексозамінопохідні глюкози (глюкозамін) і галактози (галактозамін) (див. вище). Аміноцукри входять до складу так званих гетеро полісахаридів – гепарину, гіалуронової кислоти, хондроітинсірчаної кислоти, а також до складу глікопротеїдів.

Аміноцукри – кристалічні речовини, добре розчинні у воді. Вони є сильними основами. При взаємодії з кислотами утворюють стійкі солі. При взаємодії з лугами і азотною кислотою вони не піддаються дезамінуванню.

Важливе значення в організмі мають похідні аміносахарів – нейрамінова і сіалові кислоти та деякі інші.

Нейрамінова кислота. Утворюється в результаті альдольної конденсації гексозаміну і піровиноградної кислоти. Оскільки нейрамінова кислота містить дев'ять вуглецевих атомів, то її ще називають нонулозаміновою кислотою. Нейрамінова кислота існує в ациклічній і циклічній формах.

Нейрамінова кислота міститься майже в усіх органах і тканинах організму людини і тварин. Вона входить до складу глікопротеїдів, гліколіпідів, білків сироватки крові.

При окремих патологічних станах вміст нейрамінової кислоти в тканинах і рідинах організму значно змінюється. Так, при інфекційних і психічних захворюваннях, захворюванні на рак вміст нейрамінової кислоти значно підвищується.

Нейрамінова кислота – нестійка сполука, її часто добувають у вигляді метилглікозиду і сіалових кислот м'яким кислотним або ферментативним гідролізом таких природних сполук, як орозомукоїди крові, овомуцин яйця, трисахарид молока – нейрамініллактоза і гангліозиди.

Сіалові кислоти – це ацильні похідні нейрамінової кислоти. Залежно від природи кислоти, кількості кислотних залишків, приєднаних до нейрамінової кислоти, місця їх приєднання розрізняють кілька видів сіалових кислот. Якщо залишок відповідної кислоти приєднується до азоту амінної групи нейрамінової кислоти, то таку сіалову кислоту називають N-ацилнейраміновою кислотою. У тих випадках, коли залишок якоїсь кислоти приєднується до азоту амінної групи і до кисню гідроксильної групи нейрамінової кислоти, тоді сіалову кислоту називають N,О-діацилнейраміновою:

В організмі найчастіше містяться N-ацетилнейрамінова, N,О-діацетилнейрамінова і N-гліколілнейрамінова кислоти. У першому і другому випадках нейрамінова кислота зв'язана з залишком оцтової кислоти, у третьому – з залишком гліколевої кислоти.

Сіалові кислоти виявлені в усіх тканинах і рідинах організму. Вони входять до складу молекул олігосахаридів, нуклеотидолігосахаридів, гліколіпідів і глікопротеїдів. Цілий ряд ферментів і гормонів є глікопротеїдами, які містять сіалові кислоти.

Біологічна роль сіалових кислот вивчена ще дуже мало. Однак одержані на сьогоднішній день дані свідчать про те, що сіалові кислоти відіграють важливу біологічну роль у багатьох процесах. Так, доведено, що сіалові кислоти беруть участь у процесах збудження нервової тканини, транспорті іонів, перетворенні фібриногену на фібрин та ін. Наявність сіалових кислот у складі біополімерів зумовлює їх фізико-хімічні властивості, а в ряді випадків і біологічну активність. Наприклад, відщеплення сіалової кислоти від гормонів гонадотропіну й еритропоетину призводить до втрати ними біологічної активності. Припускають, що сіалові кислоти відіграють важливу роль у процесі взаємодії вірусу і клітини.

Встановлено, що при деяких захворюваннях – злоякісних пухлинах, променевій хворобі, ревматизмі вміст сіалових кислот у крові помітно підвищується. Тому визначення їх кількості в крові має важливе діагностичне значення.

Б. Полісахариди

Складні вуглеводи ділять на олігосахариди і власне полісахариди. Олігосахариди – це вуглеводи, молекули яких містять від 2 до 10 залишків молекул моносахаридів. Найбільший інтерес представляють ди-, три- і тетрасахариди.

Дисахариди (біози). Це вуглеводи, молекули яких при гідролізі розщеплюються на дві молекули гексоз.

Розрізняють дисахариди мальтозного (мальтоза, лактоза, целобіоза, гентибіоза, мелибіоза, тураноза) і трегалозного (трегалоза, сахароза) типів зв'язку. При мальтозному типі зв'язку молекула дисахарида утворюється з двох молекул моносахаридів через кисневий місток від глікозидного гідроксила одного моносахариду і гідроксила четвертого атома вуглецю другого моносахариду. При утворенні молекули дисахарида трегалозного типу зв'язку кисневий місток виникає за рахунок обох глікозидних гідроксилів. У молекулі дисахаридів мальтозного типу зберігається вільна напівацетальна гідроксильна група, яка може переходити в альдегідну форму, надаючи дисахариду відновлюючі властивості.

При найменуванні дисахаридів за звичай користуються назвами (лактоза, мальтоза, сахароза), що історично склалися, рідше – раціональними і за номенклатурою ЮПАК. Наприклад, за номенклатурою ЮПАК лактозу слід називати 4-О-b-D-галактопіранозил-a-D-глюкопіраноза.

Для відновлюючих дисахаридів характерні всі хімічні реакції, які типові для альдоз і кетоз, що мають вільний глікозидний гідроксил (відновлення Фелінгової рідини, реакція Троммера та ін.). Дисахариди – тверді кристалічні речовини, добре розчинні у воді, оптично активні, солодкі на смак, здатні до кислотного або ферментативного гідролізу, можуть утворювати прості і складні ефіри, сахарати та ін.

Мальтоза (солодовий цукор). Відноситься до дисахаридів типу глікозидо-глюкози. Молекула мальтози складається з двох залишків a-D-глюкопіранози, які сполучені між собою в положенні 1,4:

Мальтоза у вільному стані міститься в пророслих зернах ячменю (солоді), жита, пшениці і інших злаків, а також в томатах і нектарі багатьох рослин. Мальтоза є проміжним продуктом гідролізу крохмалю, глікогену та деяких інших полісахаридів в харчовому каналі. Питоме обертання мальтози +136°. Легко піддається спиртовому бродінню з утворенням етанолу.

Лактоза (молочний цукор). Молекула лактози утворена залишками D-галактози і D-глюкози. Існує у вигляді a- і b-форм. Є обов'язковою складовою частиною молока всіх ссавців. Входить до складу глікопротеїдів і гліколіпідів, а також деяких полісахаридів. Рівнозначна суміш a- і b-форм має питоме обертання +52,2°. Існує в ациклічній і циклічній формах:

Одержують лактозу упарюванням молочної сироватки. Лактоза добре засвоюється організмом. В тонкій кишці під впливом ферменту лактази розщеплюється до галактози і глюкози. Піддається молочнокислому бродінню. Може використовуватись як наповнювач порошків і таблеток.

Целобіоза. Як проміжний продукт гідролізу клітковини утворюється в харчовому каналі травоїдних тварин (особливо в передшлунках жуйних) під впливом бактерійного ферменту целюлази. Молекула целобіози складається із залишків a- і b-глюкоз. Раціональна назва – b-глюкозидоглюкоза, за номенклатурою ЮПАК – 4-О-b-D-глюкопіранозил-D-глюкоза або О-b-D-глюкопіранозил-(1®4)-b-D-глюкопіраноза. У вільному стані целобіоза знайдена в пророслих зернах злаків, кісточках абрикоса, патоці деяких дерев. Оптично активна, питоме обертання +34,6°. Існує в ациклічній і циклічній формах:

Трегалоза (мікоза, або грибний цукор). Міститься в тканинах грибів, сокові ясена, водоростях, лишайнику, гемолімфі черв'яків і комах, дріжджах. Є складовою частиною оболонки туберкульозної палички. Молекула трегалози складається з двох залишків D-глюкози, сполучених глікозидним зв'язком 1®1. Вона не відновлює фелінгової рідини і не вступає в інші реакції, характерні для дисахаридів які мають глікозидний гідроксил. При гідролізі (ферментативному і кислотному) розщеплюється до глюкози. Дисахарид існує в циклічній формі.

Сахароза (буряковий, або очеретяний, цукор). Міститься у всіх зелених рослинах. Утворюється в результаті реакції фотосинтезу в листі, потім відкладається в бульбах, коренях, цибулинах, стеблах, плодах. Багато сахарози в коренеплодах цукрового буряка (до 27%), сокові цукрового очерету і стеблах сорго (14 – 26%). Молекула сахарози складається із залишків глюкози і фруктози, сполучених між собою кисневим містком, який виникає за рахунок двох глікозидних гідроксилів:

За номенклатурою ЮПАК сахароза називається a-D-глюкопіранозил-b-D-фруктофуранозидом. Відноситься до невідновлюючих фелінгову рідину дисахаридів. Питоме обертання +66,53°. При гідролізі (ферментативному або кислотному) молекула сахарози розщеплюється на глюкозу і фруктозу. Виникає інвертний цукор, який обертає площину поляризації вліво. Питоме обертання інвертного цукру – 39,7°. Гідроліз сахарози відбувається в тонкій кишці під впливом ферменту інвертази (сахарази). Природним інвертним цукром є бджолиний мед (98 – 99% цукру). Сахароза – цінний продукт живлення. Використовується у фармакології для виготовлення порошків, мікстур і інших лікарських засобів. В акушерській практиці її застосовують для активізації скорочення матки.

Трисахариди. Загальна формула – C18H32O16. Найбільш поширена рафіноза, що складається із залишків галактози, глюкози і фруктози (О-a-D-галактопіранозил-(1®6)- a-D-глюкопіранозил-b-D-фруктофуранозид). Міститься в цукровому буряці, насінні бавовника, зародках насіння злаків, манні евкаліпта і інших рослинах. Високий відсоток рафінози міститься в мелясі. Оптично активна (+105,2°). В харчовому каналі тваринного організму молекула трисахариду розщеплюється двома ферментами – a-галактозидазою (відщеплює залишок галактози) і інвертазою (розщеплює глікозидний зв'язок між залишками глюкози і фруктози):

Тетрасахариди. Загальна формула – С24Н42О21. Прикладом тетрасахаридів є стахіоза, невідновлюючий резервний вуглевод рослин, який складається з двох залишків галактози, залишку глюкози і залишку фруктози. За номенклатурою ЮПАК стахіоза називається О-a-D-галактопіранозил-(1®6)-О-a-D-галактопіранозил-(1®6)-О-a-D-глю-копіранозил-(1®2)-b-D-фруктофуранозид. Міститься в насінні жовтого люпину, гороху, сої, чечевиці, бульбах земляної груші, манні ясена, буряковому жомі. Служить донором і акцептором галактози в реакціях трансглікозилювання.

Власне полісахариди ділять на гомо- і гетерополісахариди.

Гомополісахариди (C6H10O5)n. Вуглеводи, молекули яких побудовані з великого числа залишків одного моносахариду: глюкоза, фруктоза, маноза, ксилоза та ін. Вони є запасними поживними речовинами (крохмаль, глікоген, інулін), служать структурною основою тканин (клітковина), виконують захисні функції (хітин). Для гомополісахаридів характерна велика молекулярна маса і складні фізико-хімічні властивості. За хімічною будовою вони є поліглікозидами – їх молекули утворюються у результаті з'єднання мономерів за допомогою глікозидних зв'язків в лінійні або розгалужені ланцюги. Залежно від хімічної природи мономерів гомополісахариди класифікують на ряд груп: глюкани, манани, галактани, фруктани, ксилани, арабінани. Найбільший практичний інтерес представляють крохмаль, глікоген, інулін, клітковина.

Крохмаль – утворюється в результаті реакцій фотосинтезу в клітинних органеллах (хлоро- і амілопластах) рослин, відкладається у вигляді запасних поживних речовин в листі, стеблах, цибулинах, бульбах і насінні. В клітинах виявляється у вигляді зерен різної форми (овальної, сферичної, неправильної), величини і шаруватості. Вміст крохмалю в зерні рису досягає 80%, пшениці – 75, кукурудзи – 72, жита – 70, ячменю – 65, вівса – 58, проса – 57, в бульбах картоплі – 12 – 25%. Зерна крохмалю містять деяку кількість білка, ліпідів, жирних кислот, мінеральних солей і фосфорної кислоти.

Крохмаль – білий аморфний порошок, не розчиняється в холодній воді, з йодом дає синє забарвлення, у воді набухає, при нагріванні водного розчину крохмальні зерна лопаються, утворюючи клейстер. Водні розчини крохмалю здатні обертати площину поляризованого світла управо на 196 – 205°.

Крохмаль складається з двох фракцій: амілози (має лінійну будову) і амілопектина (має розгалужену будову). Амілоза складає 10 – 30%, амілопектин – 70 – 90% загальної маси крохмалю. Вміст обох фракцій в крохмалі залежить від виду і сорту рослини, погодних умов, термінів збирання врожаю і т.д. В деяких сортах кукурудзи вміст амілози в крохмалі досягає 82%. Крохмаль яблук повністю складається з амілози. Амілоза і амілопектин відрізняються між собою деякими властивостями, кількісним складом мономерів і структурою молекули.

Молекула амілози складається з 200 – 1000 залишків глюкози, сполучених між собою глікозидними зв'язками по типу 1,4:

Молекулярна маса амілози – 20 тис. – 1 млн. Амілоза легко розчиняється у воді. При додаванні розчину йоду забарвлюється в темно-синій колір.

Амілопектин в гарячій воді утворює клейстер, після охолодження – гелеподібну масу. З розчином йоду дає червоно-фіолетове забарвлення. Молекула амілопектину побудована з 5000 – 6000 залишків глюкози, сполучених між собою по типу 1,4 і 1,6:

Молекулярна маса амілопектина – від 100 тис. до декількох мільйонів. На кожне розгалуження в середньому доводиться 8 – 10 залишків глюкози. На відміну від амілози, для якої характерна ниткоподібна форма, молекула амілопектина має сферичну конфігурацію.

Крохмаль може піддаватися кислотному і ферментативному гідролізу. Так, в харчовому каналі під впливом ферментів амілази і мальтази молекула крохмалю розщеплюється до декстринів, мальтози і глюкози. Калорійність крохмалю висока – близько 4 ккал/г.

Крохмаль – цінний продукт живлення, використовується також для виготовлення лікарських препаратів і в побуті.

Глікоген – тваринний крохмаль, найважливіша резервна речовина тканин і клітин організму людини і тварин. Найбільше глікогену міститься в тканинах печінки (2 – 10% загальної маси), скелетних м'язах (0,2 – 2 %), дещо менше – в інших органах і тканинах.

Глікоген – біла аморфна речовина, добре розчиняється в гарячій воді, розчин опалесціює, обертає площину поляризованого світла на +196°. З розчином йоду дає забарвлення від червоно-фіолетового до червоно-коричневого. Молекула глікогену побудована з 2400 – 300000 залишків глюкози. Молекулярна маса глікогену коливається від 400 тис. до 50 млн.

Молекула глікогену має гіллясту будову. Де залишки a-D-глюкози сполучені між собою по типу 1,4 і 1,6 (на 12 зв'язків 1,4 в середньому доводиться один 1,6 зв'язок).

Глікоген є сумішшю декількох полісахаридів з різним ступенем полімеризації. Будова молекули глікогену у тварин, що належать до різних типів і класів, різна. В харчовому каналі глікоген розщеплюється ферментами амілазою і мальтазою до a-D-глюкози. Розкладання тканинного глікогену найчастіше відбувається фосфоролітично.

Інулін – природний полімер фруктози. Резервний енергетичний полісахарид багатьох сімейств рослин: фіалкових, складноцвітих, лобелій, лілійних та ін. Багато інуліна знаходять в бульбах топінамбура (земляної груші) і жоржини – до 40 – 80% загальної сухої маси. Молекула інуліна побудована із залишків фруктози (94 – 97%) і глюкози (3 – 6%), які сполучені між собою по типу 1,2 зв'язку:

Інулін – біла аморфна речовина, солодка на смак, добре розчиняється в теплій воді, обертає площину поляризованого світла на –39°, має молекулярну масу 5 – 6 тис., добре засвоюється організмом людини і тварин. Цінна кормова речовина. Іноді (при цукровому діабеті) застосовується з лікувальною метою як замінник крохмалю, сахарози і глюкози.

Клітковина, або целюлоза, – полісахарид – основа оболонок рослинних клітин. У деревині міститься разом з геміцелюлозами, зокрема з пентозанами і лігніном. Клітковина – головна складова частина рослинних кормів. У листі рослин міститься до 30%, деревині – до 40 – 70, у волокні бавовни – до 95 – 98% чистої клітковини.

Молекула клітковини складається із залишків a- і b-D-глюкози, сполучених між собою глікозидними зв'язками по типу 1,4. Структурною одиницею полісахариду є целобіоза. Її кількість в молекулі досягає великих величин – 3 – 6 тис., що відповідає молекулярній масі 10 – 20 млн. Молекула клітковини – лінійний полімер:

Клітковина – біла волокниста речовина, без смаку, запаху, не розчиняється у воді. Спеціальних ферментів, що розщеплюють клітковину, організм людини і тварин не виробляє. В харчовому каналі (в передшлунках жуйних і ободовій кишці непарнокопитних) клітковина гідролізується під впливом бактерійних ферментів (целюлази і целобіази) до a-D- і b-D-глюкози. Останні піддаються різним видам бродіння та іншим перетворенням, після чого використовуються для структурних і енергетичних потреб організму. Клітковина є своєрідним подразником шлунково-кишкової секреції.

Клітковина широко використовується в будівництві, деревообробній і текстильній промисловості, при виробництві паперу, фото- і кіноплівок, штучних волокон, пластмас, ін.

Гетерополісахариди. Це складні вуглеводи, молекули яких побудовані із залишків різних моносахаридів, їх похідних та інших сполук. В організмі виконують різні функції: опорні (хондроітинсірчана кислота, капсулярні полісахариди мікробів), регулюють надходження поживних речовин в тканини і клітини (гіалуронова кислота), захищають організм і його тканини від різних шкідливих чинників (гепарин) і т.д. Гетерополісахариди ділять на мукополісахариди – складні вуглеводи слизового характеру – і глюкополісахариди. У свою чергу мукополісахариди ділять на кислі і нейтральні.

З кислих мукополісахаридів розглянемо гіалуронову, хондроітинсірчану кислоти і гепарин.

Гіалуронова кислота. Це гетерополісахарид, побудований із залишків молекул глюкуронової, оцтової кислот і глюкозаміна. Структурною одиницею вуглеводу є a-глюкуронідо-N-ацетилглюкозамін:

Молекулярна маса вуглеводу коливається від 200 тис. до декількох мільйонів. Гіалуронова кислота є хімічною основою склоподібного тіла ока, пупкового канатика, сіновії, оболонки яйцеклітини, капсул деяких мікробів, її багато в клітинах деяких пухлин і т.д. Розчини гіалуронової кислоти дуже в'язкі. В тканинах виконує роль склеюючої, „цементуючої” речовини, служить бар'єром, що оберігає клітини від проникнення в них мікробів і отруйних речовин, бере участь в регуляції надходження води та інших сполук в клітини, як поліелектроліт регулює обмін іонів. Полісахарид характеризується високим ступенем метаболізму – період напіврозпаду його молекули рівний двом дням. Обмін гіалуронової кислоти порушується при багатьох патологічних станах: мікседемі, ревматизмі, бактерійних інфекціях.

Хондроітинсірчана кислота – продукт полімеризації N-ацетилгалактозамінсульфата і глюкуронової кислоти, сполучених між собою b-1,3- і b-1,4-глікозидними зв'язками:

Хондроітинсірчана кислота – обов'язкова складова частина хрящів (до 40% сухої маси), кісток, основної речовини сполучної тканини, серцевих клапанів, стінок кровоносних судин, шкіри та ін. В організмі виконує опорні функції. Її молекулярна маса – 50 – 200 тис., в комплексі з колагеном – 40 – 50 млн. Бере участь в іонному обміні і регуляції надходження поживних речовин у клітини. Період напіврозпаду молекул кислоти в основній речовині шкіри – 8, хряща – 16 діб.

Гепарин – мукополісахарид, молекула якого утворена залишками a-D-глюкозаміна, глюкуронової і сірчаної кислот.

Молекулярна маса гепарина – 15 – 20 тис. Гепарин – білий аморфний порошок, розчинний у воді, стійкий до нагрівання. В організмі виробляється тучними клітинами і частково базофілами. Пригнічує утворення тромбокінази та інактивує тромбін, знижує вміст в крові холестерину, знижує артеріальний тиск. Багато гепарина міститься в тканинах печінки (до 100 мг на 1 кг маси), дещо менше – в тканинах легень, селезінки, щитовидної залози, м'язів. Натрієва сіль гепарина застосовується як антикоагулянт при переливанні крові і тромбозах.

Нейтральні мукополісахариди – це складні вуглеводи, побудовані із залишків нейрамінової і сіалових кислот. Зустрічаються у всіх органах і тканинах, секретах і сльозах. Знаходяться у вигляді сполук з білками. Їх вміст в тканинах набагато більший, ніж кислих мукополісахаридів. Вивчені недостатньо. Служать компонентами різних „нейтральних” муко- і глікопротеїдів, у тому числі багатьох ферментів і гормонів. Деякі з нейтральних мукополісахаридів визначають для організму групу крові.

Глюкополісахариди мають схожу будову з кислими мукополісахаридами, але в їх молекулах відсутні залишки молекули гексозаміна. Представником глюкополісахаридів є пектинові речовини.

Пектинові речовини – це високомолекулярні сполуки, побудовані із залишків молекул галактуронової кислоти і метилового спирту:

Містяться в бульбах і стеблах рослин, в ягодах і фруктах у вигляді нерозчинної комплексної сполуки – протопектину. Останній перетворюється на пектин під впливом розбавлених розчинів кислот або ферменту протопектинази. Ними особливо багатий цукровий буряк і морква (2,5%). Молекулярна маса пектину – 20 – 50 тис. Пектинові речовини використовуються в хлібопеченні, кондитерській і консервній промисловості, в сироварінні, при виготовленні кровоспинних засобів і як антисептик. Сировиною для їх отримання служить лушпиння соняшників, жом та ін.

Специфічні полісахариди мікробів. Ці полісахариди складають основу капсул деяких мікробів або є продуктами їх життєдіяльності. Прикладом є леван, молекула якого побудована із залишків метильованої фруктофуранози.

До складу організмів входять і інші полісахариди, хімічна будова яких була вивчена недостатньо.

Агар-агар. Цей високомолекулярний вуглевод зустрічається в багатьох водоростях, які використовуються у харчових і кормових цілях. Молекула складається з двох полісахаридів – агарози і агаропектина, а також домішок деяких інших сполук. Елементарними одиницями є D- і L-галактопіранози, сполучені між собою 1,3-глікозидними зв'язками. Використовується в мікробіології для виготовлення поживних середовищ і в кондитерській промисловості.

Геміцелюлоза. Це – полісахарид, супутний клітковині. Молекулярна маса коливається від 1 до 12 тис. Міститься в деревині, соломі, висівках (6 – 27%). Залежно від того, які моносахариди входять до складу вуглеводу, геміцелюлози ділять на манани, галактани, арабани, ксилани. При гідролізі деяких геміцелюлоз утворюються уронові кислоти.

Гуміарабік – тверда прозора маса, що виділяється деякими видами акацій. При гідролізі утворюються галактоза, рамноза, арабіноза і глюкуронова кислота. Поліелектроліт. Молекулярна маса – 20 – 100 тис. Застосовується як ліки при отруєнні їдкими лугами і як емульгатор масляних емульсій.

Декстран – полісахарид бактерійного походження, полімер глюкози. Молекулярна маса вуглеводу досягає 10 млн. В лінійній частині молекули декстрана залишки глюкози сполучені між собою 1,6-, в бічних відгалуженнях – 1,4-, 1,3- і 1,2-глікозидними зв'язками. Полісахарид одержують при культивуванні на штучних середовищах мікробів роду Leuconostos. Застосовується в медицині як замінник плазми. Використовується в хроматографії. В організмах зустрічаються також і інші полісахариди: трагакант, карайя, альгін, ін.

Лекція № 3 . Біогенні ліпіди.

Загальна характеристика, будова та функції ліпідів

Ліпідами називають жири і жироподібні речовини. Містяться вони у всіх живих клітинах і виконують ряд життєво важливих функцій: структурну, метаболічну, енергетичну, захисну. При розкладанні багатьох ліпідів вивільняється велика кількість хімічної енергії у вигляді макроергічних сполук.

Ліпіди не розчиняються або слабо розчиняються у воді, добре розчиняються в органічних розчинниках. Більшість ліпідів є похідними спиртів, вищих жирних кислот або альдегідів. Хімічні властивості і біологічне значення ліпідів визначаються наявністю в їх молекулах неполярних вуглецевих ланцюгів і полярних груп: –COOH, –ОН, –NH2 та ін. Це дає можливість їм бути поверхнево активними, брати участь в проникності клітинних мембран, легко розчинятися в органічних розчинниках, бути розчинниками для інших сполук (наприклад, вітамінів А, D, E, К, Q, F та ін.).

Розрізняють дві групи ліпідів: прості і складні. Молекули простих ліпідів утворюються із залишків спиртів (гліцерину, вищих або циклічних гліколів) і вищих жирних кислот. Це нейтральні жири, діольні ліпіди, стериди і воски. Молекули складних ліпідів складаються із залишків спиртів (гліцерину, сфінгозину, інозиту й ін.), вищих жирних кислот і інших речовин (азотистих основ, H3PO4, H2SO4, вуглеводів та ін.). До складних ліпідів відносяться фосфатиди, гліколіпіди, сульфатиди. Часто до ліпідів відносять моно- і дигліцериди, стерини, каротини й інші близькі до них речовини.

Нейтральні жири. Нейтральні жири є сумішшю тригліцеридів – складних ефірів, утворених трьохатомним спиртом гліцерином і вищими жирними кислотами:

Вищі жирні кислоти представлені насиченими, ненасиченими і циклічними карбоновими кислотами, а у ряді випадків – оксикислотами.

Насичені карбонові кислоти за звичай мають парне число атомів вуглеців, наприклад:

Масляна C3H7COOH

Капронова C5H11COOH

Лауринова С11Н23COOH

Пальмітинова С15Н31СООН

Стеаринова C17H35COOH

Мірисцинова C13H27COOH

Лігноцеринова 23Н47СООН

Мелісинова С27Н55СООН

Кислоти з непарним числом атомів вуглецю мають розгалужений вуглецевий ланцюг, наприклад валеріанова:

Ненасичені карбонові кислоти можуть мати від одного до чотирьох подвійних зв'язків, наприклад:

Пальмітоолєїнова CH3–(CH2)5–СН=СН–(CH2)7–СООН

Олеїнова CH3–(CH2)7–CH=CH–(CH2)7–COOH

Лінолева CH3–(CH2)4–CH=CH–CH2–CH=CH–(СН2)7–СООН

Ліноленова CH3–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(СН2)7–СООН

Арахідонова

CH3–(СН2)4–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)7–COOH

У складі жирів знайдені залишки циклічних кислот, наприклад, хаульмугрової:

і оксикислот, наприклад:

Церебронової CH3–(CH2)21–CH(OH)–COOH

Рицинолевої CH3–(CH2)5–CH(OH)–CH2–CH=CH–(CH2)7–COOH

Оксинервонової CH3–(CH2)7–CH=CH–(CH2)12–CH(OH)–COOH.

Тригліцериди бувають простими і складними. До складу молекули простого тригліцериду входять залишки однієї жирної кислоти, складного тригліцерида – двох або трьох жирних кислот:

Вміст простих тригліцеридів у жирах невисокий. Так, до складу свинячого сала зазвичай входять вісім різних тригліцеридів. З них прості тригліцериди – триолеїн і трипальмітин – складають всього 4%.

Жири широко поширені в тваринному і рослинному світі. У складі жирів тваринного походження переважають залишки насичених жирних кислот, що і визначає їх тверду консистенцію. Велике значення мають коров'яче масло, свиняче сало, баранячий і яловичий жир. Жири рослинного походження в своєму складі переважно містять залишки ненасичених жирних кислот і є рідинами (окрім пальмітинового масла). Найбільш часто використовуються соняшникова, оливова, льняна, мигдалева олія та ін.

У різних продуктах і кормах міститься неоднакова кількість жирів. В рослинах вони найбільше сконцентровані в насінні, менше – в плодах. Так, в насінні рицини міститься 58 – 78% жиру, рапсу – 36 – 40, льону – 28,9 – 49, соняшнику –29 – 57, зернах кукурудзи – 5, вівса – 3, пшениці – 1 – 1,8%.

В організмі тварин жири концентруються в основному в підшкірній клітковині (до 50%), сальнику, сполучнотканинних капсулах нирок і геніталіїв, у печінці і м'язовій тканині. Біологічні рідини бідні жирами. З них відносно високий відсоток жиру має молоко.

В організмі тварин жири виконують ряд життєво важливих функцій. Перш за все, жири є найважливішим джерелом хімічної енергії. Так, при тканинному окисленні 1 г жиру утворюється 9,3 ккал (1 г вуглеводів дає 4,3, білків – 4,1 ккал). Жири – найважливіше джерело ендогенної води: при окисленні 100 г жирів в тканинах утворюється 107,1 г води, що дуже важливо для тварин, які мешкають в південних широтах (наприклад, верблюдів), або для тих, які впадають в зимову сплячку (наприклад, бурих ведмедів). Жири – прекрасні розчинники органічних речовин, особливо жиророзчинних вітамінів. Беруть участь в терморегуляції, оскільки володіють низькою теплоємністю, захищають організм від механічних пошкоджень (входять до складу капсул серця, нирок, печінки, ока), обумовлюють еластичність шкіри.

Розрізняють резервні (запасні) і протоплазматичні (структурні) жири. Перші з них витрачаються організмом для різних потреб, про які йшлося вище. Другі є складовими частинами клітинних мембран, входять до складу ліпопротеїдних комплексів.

Жири – цінні продукти харчування людини і тварин. Рослинні масла, окрім харчових цілей і відгодівлі тварин (макуха), можуть використовуватися для виготовлення оліфи і лаків. Багато рослинних олій гідрогенізують, одержуючи потім різні сорти маргарину. Жири, що добуваються з печінки тріскових риб, використовують у медицині і тваринництві як джерело вітамінів А і D. Технічні жири, які одержують з тканин морських ссавців і риб, використовуються в легкій, парфумерній, хімічній промисловості і інших галузях народного господарства для виготовлення миючих засобів, піноносіїв, ін.

Якість і чистота жирів характеризуються фізичними і хімічними константами. До фізичних констант відносяться густина, температура плавлення і застигання, коефіцієнт рефракції (для рідких жирів). Хімічними константами є числа омилення, Рейхарда – Мейсля, йодне, кислотне і деякі інші показники (табл.1).

Число омилення визначається кількістю міліграмів розчину KOH, витраченого на нейтралізацію кислот, які утворюються при омиленні 1 г жиру.

Число Рейxapдa Мейсля визначається кількістю 0,1 н. розчину NaОН, що пішов на нейтралізацію летючих жирних кислот (масляної, капронової і каприлової), які утворилися при гідролізі 5 г жиру і відігнались з водяною парою.

Йодне число характеризує наявність у складі жиру ненасичених жирних кислот і визначається кількістю грамів йоду, здатного приєднуватися до 100 г жиру.

Таблиця 1.

Фізичні і хімічні константи деяких жирів

Константи

Вид жиру

Яловичий

Баранячий

Свинячий

Густина при 15°С, г/см3 

0,923 – 0,933

0,932 – 0,961

0,931– 0,938

Температура плавлення °С

42 – 52

44 – 55

36 – 46

Температура застигання °С

27–38

32 – 45

26 – 32

Коефіцієнт заломлення (при 40 °С)

1,4510–1,4583

1,4566 –1,4533

1,4536

Число омилення

190 – 200

192 – 198

393 – 200

Число Рейхарда – Мейсля

0,3 – 0,9

Йодне число

32 – 47

31– 40

46 – 56

Кислотне число

01– 0,6

0,1– 0,2

0,3 – 0,9

Кислотне число свідчить про наявність у складі жиру вільних жирних кислот, які утворилися при розкладанні його молекул. Воно визначається числом мілілітрів розчину KOH, що пішов на нейтралізацію вільних жирних кислот, які містяться в 1 г жиру.

Розглянуті константи залежать від зони проживання, умов живлення, віку, статі, породи тварини й інших чинників. Так, С.Л. Іванов встановив, що тварини одного і того ж виду, які мешкають в північних широтах, мають жири, для яких характерні більш низькі температури плавлення, ніж у тих же тварин, що проживають на півдні. У складі жирів перших переважають залишки насичених, других – насичених жирних кислот.

Діольні ліпіди. Ці ліпіди були відкриті в тканинах рослин і тварин радянським вченим Л.Д. Бергельсоном в 1967 – 1973 р. Є сумішшю різних складних ефірів, утворених з двоатомних спиртів (етандіола, пропандіола, бутандіола та ін.) і вищих жирних кислот. Загальна формула:

В організмі виконують ті ж функції, що і жири. Вивчені мало.

Стериди. Стеридами називають складні ефіри стеринів і вищих жирних кислот (найчастіше – пальмітинової). Стерини, або стероли, – високомолекулярні циклічні спирти, похідні циклопентанпергідрофенантрена. Останній можна розглядати як продукт конденсації гідратованого фенантрена і циклопентана:

Окремі кільця в структурі циклопентанпергідрофенантрена позначають буквами (А, Б, В і Г), а атоми вуглецю кілець – цифрами.

Стерини і стериди складають не здатну до омилення фракцію ліпідів. Широко поширені в природі. Входять до складу клітинних мембран. В організмі тварин стеридів міститься близько 10%.

В тканинах печінки вміст стеридів складає близько 50% загальної, маси всіх стеринів.

Залежно від походження розрізняють зоо-, фіто- і мікостерини. Похідними стеринів є багато стероїдних гормонів (статевих і кори наднирників), жовчних кислот, вітамінів групи D, стероїдних алкалоїдів, деяких тритерпенових антибіотиків, отрут шкірних залоз жаб, деяких канцерогенних речовин.

Стерини – кристалічні речовини, оптично активні, майже не розчиняються у воді, розчиняються в органічних розчинниках, безбарвні, здатні переганятися, вступають в хімічні реакції, характерні для спиртів.

Найбільший інтерес представляє холестерин і його похідні – холестериди, які є складними ефірами холестерину і вищих жирних кислот. Холестерин був відкритий в XVIII ст. Конраді при дослідженні жовчного каміння. Ним багата біла речовина мозку. За хімічною структурою холестерин – вторинний циклічний спирт:

Підраховано, що в тілі людини масою 70 кг міститься близько 140 г холестерину, з якого 10% сконцентровано в наднирниках, 2% – в нервовій системі, 0,25% – в кістках. Багато холестерину в печінці (від 0,333 до 0,91% загальної маси). Холестерин здатний утримувати певну кількість води, тому він бере участь в регуляції водного обміну. Холестерин з білками утворює комплексні сполуки.

З організму стерини виводяться головним чином у вигляді холестерину і копростерину:

У шкірі тварин і в не здатній до омилення фракції ліпідів знаходиться 7-дегідрохолестерин:

який є провітаміном вітаміну D3. Дріжджі містять ергостерин – провітамін вітаміну D2:

Воски. Велика група ліпідів, молекули яких утворені із залишків вищих жирних кислот і вищих одноатомних спиртів. Співвідношення вуглецю в кислотній і спиртовій частинах молекули воску складає 1:1 або 2:1. Натуральний віск містить домішки вільних жирних кислот і спиртів, вуглеводнів (C27–С33) і запашних речовин.

Розрізняють воски тваринного (бджолиний, ланолін, спермацет), рослинного (карнаубський, канделільський) походження, продукт виділення деяких комах (китайський), викопні (церезин і монтан) і синтетичні.

Бджолиний віск. Продукується восковими залозами бджіл. Складається з суміші складних ефірів (до 75%), вільних вищих жирних кислот і насичених вуглеводнів. Містить вітамін А і деякі інші речовини. Основа воску – складний ефір мірицилового спирту і пальмітинової кислоти:

Бджолиний віск не розчиняється у воді, розчиняється в хлороформі і діетиловому ефірі, бензині і скипидарі. Є основою бджолиних стільників. Використовується для виготовлення мазей, пластирів косметичних засобів та ін.

Ланолін. Цей віск одержують після промивки шерсті овець. Є сумішшю складних ефірів, утворених вищими спиртами (цериловим, карнаубовим, холестерином та ін.) і вищими жирними кислотами (ланопальмітиновою, міристиновою, ін.). За фізичними властивостях ланолін – це густа в'язка маса буро-жовтого кольору із слабким своєрідним запахом, не розчиняється у воді, розчиняється в хлороформі, діетиловому ефірі, гігроскопічний, не здатний до омилення водними розчинами лугів, не гіркне. Застосовують для виготовлення лікувальних мазей і в косметиці.

Спермацет. Спермацет є компонентом спермацетового масла, яке одержують з головного мозку кашалотів. Від одного кашалота можна отримати 4 – 5 т спермацету. Основною складовою частиною спермацету (до 90%) є складний ефір пальмітинової кислоти і цетилового спирту:

Деяка частина спермацету (10%) складається з складних ефірів цетилового, стеаринового, олеїнового спиртів і лауринової, міристинової кислот.

Спермацет – білі пластинчаті кристали, добре розчиняються в діетиловому ефірі, ацетоні, гарячому етанолі, не розчиняються у воді. Використовується для виготовлення лікувальних мазей і косметичних засобів. Застосовується при лікуванні виразок шкіри.

Рослинні воски. Дуже поширені в природі. Покривають тонким шаром листя, стебла, стовбури і плоди рослин. Захищають рослинні тканини від травм і мікробів. Беруть участь в регуляції водного обміну. За хімічним складом є сумішшю складних ефірів, утворених вищими спиртами (цетиловим, мірициловим) і вищими жирними кислотами (церогиновою, карнаубовою, монтановою, стеариновою, пальмітиновою, олеїновою). Найбільш широко використовується карнаубський віск, який одержують з листя деяких пальм. Основою воску є складний ефір мірицилового спирту і деротинової кислоти:

Карнаубський віск використовується для виготовлення свічок, полірувальних сумішей, ін.

Фосфатиди. Фосфатиди – жироподібні речовини, які містять, окрім складних ефірів вищих спиртів і вищих жирних кислот, також залишок фосфорної кислоти і азотисті основи.

Фосфатиди з іншими ліпідами і білками складають хімічну основу клітинних мембран, обумовлюють їх вибіркову проникність для різних речовин, беруть участь в процесах клітинного дихання і перенесенні електронів.

Молекула фосфатида складається з двох частин: полярної (гідрофільної) і аполярної (гідрофобної). Гидрофільна „голова” володіє негативним зарядом фосфату і позитивним азоту і є перманентним диполем (цвіттер-іон). Гідрофобний „хвіст” складається з довгих ланцюгів залишків вищих жирних кислот. Саме така структура молекули обумовлює поверхнево-активні властивості ліпіду, дає можливість формувати плівкові структури в моношарі на межі розділу фаз, взаємодіяти з різними (полярними і аполярними) сполуками і брати активну участь в реакціях асиміляції і дисиміляції.

Найбільше фосфатидів міститься в нервовій тканині (до 26 – 30% сухої маси), печінці (16%), нирках (11%) і серці (10%). Фосфатиди синтезуються в комплексі Гольджі. Залежно від природи спиртового залишку фосфатиди ділять на гліцеро-, інозит- і сфінгозинфосфатиди.

А. Гліцерофосфатиди

Молекула гліцерофосфатидів є складним ефіром гліцерину, вищих жирних кислот, фосфорної кислоти і азотистої основи.

Лецитини, або холінфосфатиди. В утворенні молекули a- і b-лецитинів беруть участь гліцерин, насичені і ненасичені вищі жирні кислоти, H3PO4 і холін. В a-лецитині залишок холіну і H34 розміщуються біля атома C1 молекули спирту:

Багато лецитину міститься в спинному і головному мозку (35,2 – 12,4%), жовтку курячого яйця (6,5 – 12%), легенях, міокарді, нирках (5,9 – 5,2%), ін. Використовується організмом для біосинтезу ацетилхоліну. Застосовується (у вигляді драже) при лікуванні захворювань нервової системи, анеміях, загальному виснаженні організму.

Лецитином багаті також багато рослин: насіння соняшнику (38,5%), льону (36,2%), боби сої (35%) та ін.

Кефаліни, або коламінфосфатиди. Молекула кефалінів містить компонент основного характеру – етаноламін (коламін):

Кефалінова фракція складає ліпідну основу тканин головного мозку людини (66%), печінки великої рогатої худоби (51%), міокарду (30%), жовтка курячого яйця (28,7%). Багаті кефалінами боби сої (65), насіння бавовника (71,2%), льону і соняшнику (61,5%). Кефаліни утворюють з білками ліпопротеїдні комплекси. Багато кефалінів міститься в мітохондріях. Погану розчинність кефалінів у спирті використовують для відділення їх від лецитинів.

Серинфосфатиди. В молекулі серинфосфатидів азотистою основою є амінокислота серин:

Серинфосфатиди входять до складу кефалінової фракції. Серинфосфатидами багата нервова тканина, печінка, нирки та інші органи. Це протоплазматичні ліпіди. Їх багато в мітохондріях.

Між лецитинами, кефалінами і серинфосфатидами існує генетичний зв'язок, оскільки азотисті основи можуть перетворюватися одна в одну:

Ацетальфосфатиди (плазмалогени). В будові ацетальфосфатидів беруть участь альдегіди вищих жирних кислот. Ця група ліпідів була відкрита P. Фельгеном в 1924 р. Найчастіше ацетальфосфатиди мають таку структуру:

Розрізняються між собою азотистими основами, вищими жирними кислотами і їх альдегідами, а також способами утворення ацеталей. Складають близько 12% всіх фосфатидів тканин. Етаноламінкефалінова фракція мозку на 2/3 складається з ацетальфосфатидів. Сперматозоїди на 55 – 60% складаються з холінвмісних ацетальфосфатидів. В окремих органах (печінка, міокард, нирки, м'язи) вміст ацетальфосфатидів з віком збільшується.

Кардіоліпіни. Вперше виділені з екстракту міокарду. Основу структури молекули кардіоліпіну складають три залишки гліцерину, сполучені між собою фосфодіефірними зв'язками типу 1,3 (R – залишки вищих жирних кислот):

Кардіоліпіни складають майже 10% всіх ліпідів мітохондрій. Припускають, що ці ліпіди беруть участь в окислювальному фосфорилуванні і перенесенні електронів, у скріпленні комплементу при згортанні крові.

Б. Інозитфосфатиди

Інозитфосфатиди – ліпіди, вперше отримані з екстракту м'язової тканини. Їх молекула є складним ефіром, утвореним гліцерином, вищими жирними кислотами, H3PO4 і шестиатомним спиртом інозитом. Розрізняють монофосфоінозитиди і дифосфоінозитиди.

Знайдені інозитфосфатиди в молекулі яких немає залишків гліцерину. Багато ліпідів типу інозитфосфатидів було виявлено в нервовій тканині (мозку), особливо в мієлінових оболонках нервових волокон:

. Інозитфосфатиди здатні утворювати комплексні сполуки з білками. Залишок інозиту може вступати в реакції з галактозою, татроновою кислотою і вищими жирними кислотами, коламіном, об'єднуючи в єдине ціле продукти обміну білків, вуглеводів і ліпідів, характерних для нервової тканини.

В. Сфінгозинфосфатиди

Молекули сфінгозинфосфатидів утворені із залишків сфінгозина, вищих жирних кислот, фосфорної кислоти і холіну:

Їх часто називають сфінгомієлінами. Високим вмістом сфінгомієлінів вирізняється нервова тканина (вони складають основу мієлінових оболонок нервових волокон), селезінка, легені, нирки, підшлункова залоза. Іноді в молекулі ліпіду міститься залишок дигідросфінгозина. За фізичними властивостями сфінгозинфосфатиди – білі кристалічні речовини, утворюють водний колоїдний розчин, можуть розчинятися в суміші хлороформу і метанолу. Вищі жирні кислоти в основному представлені стеариновою кислотою (50%), менше – лігноцериновою і нервоновою.

Сфінгозинфосфатиди складають 20% всіх ліпідів мозку.

Гліколіпіди. Гліколіпіди – жироподібні речовини, молекули яких містять також вуглеводний компонент.

Цереброзиди. Є сумішшю складних ефірів, побудованих із залишків сфінгозина, вищих жирних кислот і галактози. В цереброзидах сфінгозин міститься у вигляді цереброна – сполуки церебронової кислоти і галактози, керазина – сполуки лігноцеринової кислоти і галактози і нервона – сполуки нервонової кислоти і галактози:

Цереброзидами багаті тканини мозку. Цереброзиди селезінки містять у складі молекули залишки глюкози (глюкоцереброзиди).

Цереброзиди – тверді речовини, не розчиняються у воді, розчиняються в діетиловому і петролейному ефірах, при кип'яченні набухають, при нагріванні до 200°С розкладаються. В організмі виконують структурну і метаболічну функції.

Гангліозиди. Молекули гангліозидів зазвичай складаються із залишку сфінгозина, вищої жирної кислоти (переважно стеаринової), гексоз (галактози і глюкози), галактозаміна і сіалових кислот. Молекула гангліозида в середньому містить: галактози – 40 – 43%, нейрамінової кислоти – 21%, сфінгозина – 13%, гексозамінів, глюкози і стеаринової кислоти – 23 – 26%.

Багато цих ліпідів міститься в нервовій тканині, паренхіматозних органах, клітинах крові. Гангліозиди є структурними компонентами нейронів, знешкоджують отрути (наприклад, правця), беруть участь в проведенні нервових імпульсів і деяких реакціях обміну речовин.

Сульфатиди. Сульфатиди – складні ефіри, утворені сфінгозином, цереброновою або лігноцериновою кислотами, галактозою і сірчаною кислотою:

Наведена формула ілюструє хімічну будову сульфатида, виділеного з тканин мозку. Сульфатиди знаходять в тканинах печінки, нирок, м'язів та ін. Вміст ліпідів зростає при мієлінізації нервових волокон. Вони з'являються в сечі при церебральному склерозі.

Лекція № 4. Білки. Амінокислоти.

Білки. Амінокислоти

Білки – високомолекулярні органічні сполуки, азотовмісні нерегулярні біополімери, побудовані з великої кількості залишків амінокислот, сполучених пептидним та іншими видами зв’язків. Свою назву білки дістали від яєчного білка, що з давніх-давен використовувався як харчовий продукт. Уперше термін “білки” було застосовано за аналогією з яєчним білком французьким фізіологом Ф. Кейе в 1747 р. Пізніше, в 1838 р., дослідником Н. Мульдером білки були названі протеїнами. Нині у літературі використовуються обидва терміни. Білки є найважливішими в біологічному відношенні і найскладнішими за своєю хімічною структурою сполуками. Вони становлять структурну і функціональну основу всіх живих організмів.

Функції білків

Каталітична функція. Усі ферменти – біологічні каталізатори, що зумовлюють перебіг хімічних реакцій в організмі – мають білкову природу. Вони є необхідними для життєдіяльності кожного живого організму.

За участю ферментів у клітинах одночасно проходить багато різних хімічних реакцій, які забезпечують синтез і розщеплення різноманітних сполук з досить великою швидкістю за звичайних температурі і тиску. Зараз відомо близько 2 тисяч білків, які ферментативно активні і більше 200 з яких виділено в кристалічному стані.

Структурна функція. Білки в середньому становлять 18 – 21 % загальної сирої маси організму людини і тварин і до 45 – 50 % їх сухої маси. Найбільша кількість білків міститься в паренхіматозних органах – селезінці, легенях, нирках та м’язах. Найменша кількість їх міститься у кістковій тканині. Білки входять до складу усіх органів і тканин. Вони беруть участь в утворенні структурної основи клітин і їх органел – мембранних структур, мітохондрій, рибосом, цитоплазми. Людині і вищим тваринам білки необхідні для утворення стінок судин, формування покривних, м’язових і сполучних тканин організму, вони становлять основу органічної частини кісткової тканини, хрящів, зв’язок і сухожилля.

Транспортна функція. Білки виконують також важливу транспортну функцію. Для нормальної життєдіяльності кожного організму необхідне постійне забезпечення його органів і тканин поживними речовинами. Ці речовини переносяться з током крові сполуками білкової природи. Так, перенесення кисню до тканин, а на зворотному шляху вуглекислого газу до легень здійснюється за допомогою складного білка хромопротеїдного типу – гемоглобіну. Транспорт різних груп ліпідів і жиророзчинних вітамінів до різних органів і тканин здійснюється за участю складних білків – ліпопротеїдів.

Гормональна функція. Значна кількість гормонів також є білками або продуктами білкового обміну. Це, зокрема, такі гормони, як інсулін, тетелін, тиреотропін, глюкокортикотропіни, оксітони, вазопресин та ін. Гормони беруть активну участь у регуляції обміну, впливають на проникність клітинних мембран, регулюють активність ферментів, діють на процеси трансляції і транскрипції та ін.

Рецепторна функція мембранних білків пов’язана з передачею сигналу від гормонів та антитіл у клітину. Подібну функцію виконують білки мембранних каналів, по яких транспортуються іони та моносахариди.

Скорочувальна функція білків м’язів та мікрофіламентів цитоскелету. Білки беруть участь у забезпеченні різних форм механічного руху – скороченні і розслабленні м’язів, роботи внутрішніх органів – серця, легень, шлунку і т. д. Ці процесії здійснюються за участю таких білків, як актин, міозин, тропоміозин і ряду інших.

Захисна функція здійснюється в основному за участю білків g-глобулінів, з якими пов’язані імунні реакції організму. Антитіла, які утворюються в організмі при несприятливій дії на нього різних факторів (хвороботворних бактерій, вірусів, токсинів), мають білкову природу. Зв’язуючись з мікроорганізмами чи токсинами, вони інактивують їх, гальмують патогенну дію і знешкоджують токсичні продукти. Відомо ряд інших процесів, в яких білки також виконують захисну функцію, наприклад у процесах зсідання крові, оберігаючи організм від надмірної втрати її при різних травмах, тощо.

Токсична та детоксикуюча функція, наприклад, дуже токсичні речовини зв’язують альбуміни крові.

Енергетична функція. Найбільш виражена при голодуванні організму. Білки, як і вуглеводи, і ліпіди, є також і найважливішим джерелом енергії для організму. Так, при розщепленні 1 г білка виділяється 17,7 кДж енергії. За рахунок білків організм людини одержує 10 – 15% енергії.

Отже, з далеко неповного переліку функцій білків в організм; видно, що їм належить ведуча роль у забезпеченні процесів життєдіяльності. Багатоплановість і важливість проблеми білка зумовлена насамперед тим, що з нею пов’язано вирішення досить важливого питання про закономірності розвитку живої матерії, пізнання вищої форми її існування, розкриття суті явищ, що лежать в основі життя, і свідомого керування ним.

Хімічний склад білків

Елементний склад. Дослідження елементного складу білків розпочалось ще на початку XIX ст. Перші дані про елементарний склад білків з’явились у 1809 р. на основі досліджень Ф. Грена. У результаті хімічного аналізу білків було визначено їх важливі складові елементи та кількісне співвідношення. Так, було встановлено, що до складу білків входять, %: вуглець – 50 – 55, водень – 6,5 – 7,3, азот – 15 – 17, кисень – 21 – 23, сірка – 0,3 – 2,5. У складі білків було виявлено також фосфор, йод, залізо та інші елементи.

Амінокислотний склад. Разом з визначенням елементного складу білків було розпочато вивчення і їх будови. Спочатку вважали, що основними структурними компонентами молекул білка є пептони, які було виділено при гідролізі різних білків. Пізніше (серед продуктів розщеплення білків) дослідники звернули увагу на речовини, які довгий час розглядалися ними не як складові частини молекул білка, а як продукти дії на білкові речовини сильних хімічних реагентів.

У 1820 р. А. Браконно вперше при кислотному гідролізі білка (желатини) виділив амінокислоту – гліцин. Оскільки амінокислота була солодка на смак, то її назвали глікоколом. Дещо пізніше (у 1871 р. російським хіміком М.М. Любавіним) було доведено, що і при ферментативному гідролізі білки розкладаються на амінокислоти.

Отже, в другій половині XIX ст. було встановлено, що основними структурними компонентами білка є амінокислоти.

Амінокислоти

У живих клітинах синтезується багато макромолекул (білків, нуклеїнових кислот, полісахаридів), які відіграють роль структурних компонентів, біокаталізаторів, гормонів, рецепторів або в них зосереджена генетична інформація. Ці макромолекули представляють собою біополімери, які побудовані з мономерних одиниць, або структурних блоків. В нуклеїнових кислотах мономерними одиницями є нуклеотиди, в складних полісахаридах – цукри і їх похідні, а в білках – L-a-амінокислоти.

Білки, крім того можуть містити й інші компоненти, однак трьохвимірна структура, а відповідно, й їх біологічне значення визначається в основному амінокислотним складом, порядком чергування амінокислот в поліпептидному ланцюзі і як наслідок їх взаємним просторовим розміщенням.

Амінокислоти в клітинах виконують багато важливих функцій; деякі з біологічно важливих сполук, які утворюються із амінокислот наведені в таблиці 3.

Біологічне значення. Амінокислоти являючись будівельними блоками пептидів і білків, виконують і ряд інших важливих функцій. Деякі з них, мабуть приймають участь у передачі нервових імпульсів; прикладами служать гліцин і глютамінова кислота. В їжі повинні міститися незамінні амінокислоти, оскільки організм людини не здатен синтезувати їх в кількостях, достатніх для росту. В результаті метаболізму амінокислот утворюється багато сполук, які мають важливе біологічне значення. Наприклад, при декарбоксилуванні деяких амінокислот утворюються відповідні аміни, і деякі з них (гістамін, g-аміномасляна кислота (ГАМК)) виконують важливі біологічні функції. Ряд аномальних процесів, які виникають в організмах, пов’язані з порушенням транспорту амінокислот до клітин.

Амінокислоти містять в якості функціональних груп аміногрупу і карбоксильну групу. В a-амінокислотах обидві вони зв’язані з одним і тим же (a) вуглецевим атомом:

У природі існує близько 300 амінокислот, однак в білках виявлено тільки 20 з них. У результаті повного гідролізу білків вивільняється 20 L-a-амінокислот (табл. 1). Одні і ті ж 20 амінокислот присутні в білкових молекулах всіх форм життя – рослин, тварин і мікроорганізмів. Чому це так – ми зрозуміємо пізніше, коли будемо обговорювати універсальну природу генетичного коду. Однак, у ряді білків зустрічаються похідні деяких амінокислот, які утворюються вже після включення звичайних амінокислот в молекулу білка (табл. 3).

За виключенням гліцину, у якого R – це атом гідрогену, у всіх амінокислот чотири групи, зв’язані з a-вуглецевим атомом, різні. Дякуючи тетраедричному розміщенню чотирьох різних груп відносно a-вуглецевого атома амінокислота володіє оптичною активністю (здатністю обертати площину поляризації плоскополяризованого світла). Одні амінокислоти, що входять до складу білків, є (при рН=7,0) правообертаючими, а інші – лівообертаючими, однак всі вони мають абсолютну конфігурацію L-гліцеральдегіду і тому є L-a-амінокислотами.

Іонні форми амінокислот. Амінокислоти несуть по крайній мірі дві слабоіонізуючі кислі групи, –СООН і –NH3+. У розчині ці групи знаходяться у двох формах, зарядженій і незарядженій, між якими підтримується протонна рівновага:

R–СООН Û R–СОО- + Н+ і R–NН3+ Û R–NН2 + Н+.

Групи R–СООН і R–NН3+ є протонованими партнерами, тобто кислотами, а R–СОО- і R–NН2 – спряженими основами, тобто акцепторами протонів відповідних кислот. При значеннях рН, характерних для плазми крові і міжклітинної рідини (7,4 і 7,1 відповідно), карбоксильні групи знаходяться виключно у формі карбонілатних іонів, R–СОО-. При цих же значеннях рН більша частина аміногруп знаходиться переважно у асоційованій формі, R–NН3+. Однак в багатьох рівняннях краще використовувати не дисоційовані форми молекул амінокислот, наприклад при обговоренні питання про хімізм реакцій.

Повний сумарний заряд (алгебраїчна сума всіх позитивних і негативних зарядів) амінокислоти залежить від рН середовища, тобто від концентрації протонів гідрогену в розчині. Заряд амінокислоти або її похідного можна змінити, варіюючи значенням рН середовища; це полегшує фізичне розділення амінокислот, пептидів, білків.

Значення рН, при якому сумарний заряд молекули амінокислоти дорівнює нулю, називається ізоелектричною точкою (рІ), саме тому вона не переміщується в постійному електричному полі. Значення ізоелектричної точки знаходиться між найближчими значеннями рК дисоціюючих груп по різні сторони від рІ.

Структура амінокислот. Амінокислоти, які входять до складу білків, є можливість розбити на дві великі групи на основі того, якими є R–групи, зв’язані з атомом a-вуглецю, – полярними і неполярними (табл. 2).

Усі амінокислоти, які виявлено в складі білків, синтезуються в рослинних організмах. В організмі людини і тварин синтезується лише частина протеїногенних амінокислот, а деякі з них утворюються в недостатній кількості для нормального синтезу. В зв’язку з цим усі їх поділяють на три групи: замінні, напівзамінні і незамінні (табл. 2). Останні дві групи в організмі синтезуються в недостатній кількості або не синтезуються взагалі, і тому вони повинні надходити до організму ззовні, в основному з їжею.

Таблиця 1

L-a-амінокислоти, які входять до складу білків1)

Назва

Скорочене

позначення

Структурна

формула

З аліфатичними боковими ланцюгами

1

Гліцин

Глі Gly G

2

Аланін

Ала Ala A

3

Валін

Вал Val V

4

Лейцин

Лей Leu L

5

Ізолейцин

Іле Ile I

З боковими ланцюгами, які містять гідроксильні (ОН) групи

6

Серин

Сер Ser S

7

Треонін

Тре Thr T

8

Тирозин

Тир Tyr Y

див. нижче

З боковими ланцюгами, які містять атоми сірки

9

Метіонін

Мет Met M

10

Цистеїн2)

Цис Cys C

Імінокислоти

11

Пролін

Про Pro P

З боковими ланцюгами, які містять кислі групи і їх аміди

12

Аспарагінова кислота

Асп Asp D

13

Аспарагін

Асн Asn N

14

Глютамінова кислота

Глу Glu E

15

Глютамін

Глн Gln Q

З боковими ланцюгами, які містять основні групи

16

Аргінін

Арг Arg R

17

Лізин

Ліз Lys K

18

Гістидин

Гіс His H

Амінокислоти, які містять ароматичні кільця

19

Гістидин

Гіс His H

див. вище

20

Фенілаланін

Фен Phe F

21

Тирозин

Тир Tyr Y

22

Триптофан

Три Trp W

1) За виключенням гідроксилізину і гідроксипроліну, які включаються до молекул білків у вигляді лізину та проліну, а потім гідроксилюються, для всіх перерахованих в таблиці амінокислот є специфічні тРНК, тому їх включення в білок здійснюється під прямим генетичним контролем.

2) Цистин складається із двох молекул цистеїну, з’єднаних дисульфід ним зв’язком:

У таблиці 1 наведені трьохбуквенні і однобуквені позначення амінокислот, які широко використовуються в біохімії. Однобуквені позначення застосовуються для запису досить довгих амінокислотних послідовностей (наприклад, повних амінокислотних послідовностей білків).

Таблиця 2

Класифікація L-a-амінокислот, які входять до складу білків,

основана на полярності їх R–груп

Неполярні

Полярні

Аланін

Валін*

Ізолейцин*

Лейцин*

Метіонін*

Пролін

Триптофан*

Фенілаланін*

Аргінін**

Аспарагін

Аспарагінова кислота

Гістидин**

Гліцин

Глютамін

Глютамінова кислота

Лізин*

Серин

Тирозин**

Треонін*

Цистеїн

* - незамінні амінокислоти;

** - напівзамінні амінокислоти.

Амінокислоти, які знаходяться у вільному стані або які входять до складу інших сполук (не білків), виконують важливі функції в багатьох метаболічних процесах (табл. 3). Наприклад, амінокислоти орнітин, цитрулін і аргініносукцинат беруть участь у метаболізмі сечовини. В природних об’єктах виявлено більше 20 D-амінокислот. До їх числа належить D-аланін, D-глутамат, які входять до складу клітинних стінок деяких бактерій; ряд D-амінокислот входить до складу антибіотиків.

Таблиця 3

Деякі амінокислоти, які не входять до складу білків, але відіграють важливу

роль в метаболізмі організму

Назва

Роль

Структурна формула

Гідроксилізин

Входить до складу колагену та желатини

Гідроксипролін

Входить до складу колагену та желатини

Орнітин

Проміжна сполука в метаболізмі треоніну, аспарагінової кислоти і метіоніну.

3,5-дийодтирозин

Попередник тиреоїдних гормонів

Гомоцистеїн

Проміжна сполука в біосинтезі цистеїну

Гомосерин

Проміжна сполука в метаболізмі треоніну, аспарагінової кислоти і метіоніну.

Цитрулін

Проміжна сполука в біосинтезі сечовини

b-аланін

Складова частина коферменту А і вітаміну пантетеїну

Таурин

Знаходиться у жовчі в складі кон’югатів жовчних кислот

g-аміномасляна кислота (ГАМК)

Нейромедіатор, який утворюється із глутамату в тканинах мозку

Розчинність амінокислот. Амінокислоти містять по декілька заряджених груп, тому вони легко піддаються сольватації і добре розчиняються в полярних розчинниках (вода, етанол) і не розчиняються в неполярних розчинниках (бензол, гексан, ефір). Температура плавлення амінокислот досить велика (> 200°C). Це теж обумовлено присутністю в них заряджених груп.

Загальні хімічні властивості амінокислот, які визначаються властивостями карбоксильної і аміногруп

Властивості карбоксильної групи

Як і всі інші сполуки, що містять карбоксильну групу, амінокислоти при взаємодії з основами утворюють солі, а в результаті реакцій із спиртами і амінами утворюють, відповідно, ефіри і аміди.

Важливу роль в біохімії відіграє реакція декарбоксилування амінокислот, в результаті якої карбоксильна група зникає і залишається тільки аміногрупа:

Методи визначення С-кінцевих амінокислот. Для вивчення С-кінцевих амінокислот часто використовують метод гідразинолізу, розроблений японським ученим Ф. Акабборі, який грунтується на гідролізі поліпептидного ланцюга білкової молекули гідразином. При цьому С-кінцева амінокислота відщеплюється у вільному стані, а всі інші амінокислоти – у вигляді сполук з гідразином:

Гідролізат потім обробляють 2,4-динітрофторбензолом, у результаті чого гідразиди перетворюються на ДНФ-гідразиди, а С-кінцева амінокислота – на ДНФ-амінокислоту (див. нижче).

Після цього ДНФ-гідразиди екстракцією (оцтово-етиловим ефіром) відділяють від ДНФ-амінокислот.

Для визначення С-кінцевої амінокислоти застосовують також ферментативний метод, використовуючи панкреатичні карбоксипептидази.

Так, карбоксипептидаза А відщеплює від білка або пептиду лише той амінокислотний залишок, який має вільну карбоксильну групу.

Інформацію про послідовність С-кінцевих амінокислот у ланцюгу можна отримати під час визначення швидкості відщеплення кожного наступного С-кінцевого залишку амінокислоти. Необхідно відзначити, що карбоксипептидаза А малоактивна до залишків С-кінцевих амінокислот лізину, аргініну і проліну. Тому залишки цих амінокислот досліджують з використанням карбоксипептидази В.

Властивості аміногрупи

Як і всі сполуки, що містять аміногрупу, амінокислоти взаємодіють з кислотами, утворюючи солі.

Відділення аміногрупи від амінокислоти може бути здійснено багатьма способами. Найважливіший з них – окислювальне дезамінування:

Аміногрупа вступає в реакцію приєднання з формаліном:

Інтерес до цієї реакції обумовлений тим, що вона призводить до блокування амінної функції амінокислоти. Сполука, що утворюється, володіє тільки кислотними властивостями і її кількісне визначення можна здійснити простою нейтралізацією лугом (формалінове титрування по Серенсену).

Наведені нижче реакції широко використовуються при дослідженні будови білків.

Методи визначення N-кінцевих амінокислот

Реакція з динітрофторбензолом (реакція Сенгера). Динітрофторбензол реагує з аміногрупою амінокислоти і, звільняючи фтористоводневу кислоту, утворює динітрофеніламінокислоту (ДНФ-ак):

Ця реакція може відбуватися і за участю амінокислот, що входять в білок, але тільки по їх вільних аміногрупах. Якщо після завершення реакції провести гідроліз білка, то всі амінокислоти вивільняються. Гідроліз не порушує структуру ДНФ-ак. Використовуючи розчинність ДНФ-ак в органічних розчинниках, можна відділити, а отже і ідентифікувати амінокислоти, які, знаходячись у складі білка, мали вільні аміногрупи.

Реакція з 1-диметиламінонафтил-5-сульфонілхлоридом (дансилом, ДНС-метод). Більш чутливим, ніж динітрофенільний, є дансильний метод визначення N-кінцевих амінокислот. Суть цього методу полягає в тому, що N-кінцева амінокислота пептиду в лужному середовищі взаємодіє з 1-диметиламінонафтил-5-сульфонілхлоридом (дансилом). При цьому утворюється диметилнафтилсульфоніл-білок (ДНС-білок):

Далі здійснюють кислотний гідроліз ДНС білка 20% розчином HCl, що призводить до утворення вільних амінокислот і N-кінцевої амінокислоти у вигляді ДНС-похідного:

Після цього ДНС-амінокисоту, завдяки інтенсивній флуоресценції дансильних груп, виявляють і кількісно визначають.

Реакція з фенілізотіоціанатом (реакція Едмана). Фенілізотіоціанат в слаболужному середовищі реагує з аміногрупою:

У слабокислому середовищі продукт цієї реакції циклізується. Якщо піддати амінокислоту, яка входить до складу білка, дії фенілізотіоціаната, то її можна виділити й ідентифікувати у формі фенілтіогідантоїнового (ФТГ-ак) похідного:

Цей метод дозволяє ідентифікувати кінцеві амінокислоти білка, аміногрупи яких вільні. Утворення ФТГ-ак не вимагає гідролізу решти частини білка.

Для визначення N-кінцевих залишків амінокислот крім хімічних методів використовують також і ферментативні. З цією метою використовують фермент з групи екзопептидаз – лейцинамінопептидазу, яка діє на пептид з N-кінця.

Кольорові реакції. Нінгідрин здійснює декарбоксилування a-амінокислот з утворенням СО2, NH3 і альдегіду, який містить на один атом вуглецю менше, ніж вихідна амінокислота. Відновлений нінгідрин реагує з вільним аміаком, утворюючи блакитний комплекс з максимумом поглинання при lmax=570 нм:

Утворення цієї забарвленої сполуки використовується в кількісному тесті на a-амінокислоти, за допомогою якого є можливість виявити їх, якщо навіть вони знаходяться у концентрації до 1мкг. Нінгідрин реагує не тільки з амінокислотами, але і з другими амінами; при цьому також утворюється блакитне забарвлення, але не виділяється вуглекислий газ. Таким чином, саме виділення СО2 є індикатором участі в реакції a-амінокислоти. Аміак і пептиди також вступають в реакцію з нінгідрином, але менш активно ніж a-амінокислоти. Продукт реакції між проліном (гідроксипроліном) і нінгідрином має жовте забарвлення.

Флуорескамін є ще більш чутливим реагентом, який дозволяє виявляти амінокислоти в кількості порядку нанограм. Як і нінгідрин, він утворює комплекс не тільки з амінокислотами, але і іншими амінами.

Утворення пептидних зв’язків. Найбільш важливою реакцією, в якій приймають участь амінокислоти, є утворення пептидних зв’язків. При цьому виділяється одна молекула води:

Однак, реакція здійснюється не так, як показано на малюнку, оскільки рівновага сильно зміщення в сторону гідролізу пептичного зв’язку. Для утворення пептидного зв’язку між двома амінокислотами карбоксильна група повинна бути попередньо активована. Хімічний синтез здійснюється шляхом попереднього утворення хлорангідриду. Біологічна активація включає взаємодію з АТФ.

Властивості індивідуальних амінокислот. Гліцин, найменша з амінокислот, може локалізуватися в таких областях трьохвимірної структури, які недоступні для інших.

Аліфатичні R–групи аланіну, валіну, лейцину і ізолейцину, а також ароматичні R-групи фенілаланіну, тирозину і триптофану – гідрофобні; ця властивість призводить до одного важливого наслідку – утворення впорядкованого поверхневого шару молекул води в області поверхні молекули білка, де експоновані неполярні R–групи. Заряджені R–групи основних і кислих амінокислот відіграють важливу роль в стабілізації специфічної конформації білка шляхом утворення сольових зв’язків. Крім того, амінокислоти з позитивно і негативно зарядженими R–групами, а також гістидин можуть приймати участь у формуванні систем “перенесення заряду”, які в ході ферментативного каталізу забезпечують переміщення заряду на значні відстані. І на завершення, унікальна і важлива роль у ферментативному каталізі належить гістидину – рК імідазольної групи при рН=7 може позмінно виступати в ролі основного або кислотного каталізатора.

Первинна спиртова група серину і первинна тіоспиртова група (–SH) цистеїну є добрими нуклеофілами які приймають участь в ферментативному каталізі. Хоча вторинна спиртова група треоніну теж виявляє нуклеофільні властивості, але дані про її можливу каталітичну функцію відсутні. Окрім каталітичної функції –ОН група серину приймає участь в регуляції активності деяких ключових ферментів метаболізму, активність яких залежить від фосфорилювання окремих залишків серину.

Амінокислоти не поглинають світло в видимій частині спектру (іншими словами, вони не мають забарвлення). За виключенням ароматичних кислот і гістидину, вони не поглинають світло і в ультрафіолетовій області при довжинах хвиль вище 240 нм.

Методи виділення та ідентифікації амінокислот. Фракціонування і визначення окремих амінокислот. Деякі амінокислоти дають кольорові реакції або володіють характерним спектром поглинання, що створює можливість їх кількісного визначення. Існують, проте, і більш загальні методи, що дозволяють ідентифікувати, а потім і визначити вміст кожної з амінокислот в суміші після фракціонування. Ці методи можуть бути використані при дослідженні тканинних екстрактів, біологічних рідин (плазми крові, сечі) або білкових гідролізатів, в яких зв'язок між амінокислотами вже розірваний.

Хроматографія на папері (Мартін, Гордон і Синдж). Цей метод відіграє важливу роль при аналізі амінокислот, і сама техніка хроматографії на папері була розроблена саме для цієї мети.

Коли мають справу з складною сумішшю амінокислот, наприклад при аналізі гідролізата білків, доводиться вдаватися до двомірної хроматографії. При проведені хроматографії в одному напрямі часто використовують як розчинник фенол, а в перпендикулярному – суміш бутанола і водного розчину оцтової кислоти. Амінокислоти проявляють за допомогою нінгідрина при підвищеній температурі. Амінокислоти, які відносяться до однієї групи, розташовуються на одній плавній кривій.

Іонообмінна хроматографія на колонці (Мур і Стейн). Цей метод дозволяє проводити кількісне визначення амінокислот у суміші. Скляну колонку заповнюють смолою, яка містить на матриці полістиролу угрупування – SO3H-Na+. В кислому середовищі амінокислоти поводять себе як основи. Вони утворюють катіони, здатні витісняти частину іонів Na+ і, займаючи їх місце, затримуватися на колонці. Чим більш основною є дана амінокислота, тим міцніше вона зв'язується електростатичними силами із смолою. Потім через колонку пропускають елюючу рідину, поступово збільшуючи її рН (градієнт рН). Коли рН елюента наближається до значення рН, відповідного даній амінокислоті, вона відділяється від смоли і починає рухатися уздовж колонки. Оскільки величини pHi для різних амінокислот неоднакові, амінокислоти виходять з колонки по черзі. Необхідно, проте, мати на увазі, що міцність зв'язку між амінокислотою і смолою обумовлена не тільки електростатичними силами, а залежить також від сил іншої природи. Тому в деяких випадках порядок виходу амінокислот може не відповідати порядку зміни величини рНi. Процес проведення хроматографії залежить від температури. Методика колоночної хроматографії використовується в двох варіантах:

а) в поєднанні з колектором фракцій. Амінокислоти збирають в окремі пробірки у вигляді невеликих фракцій. В кожну з пробірок додають нінгідрин і нагрівають (реакцію з нінгідрином проводять зазвичай при підвищеній температурі). За допомогою спектрофотометра вимірюють потім спектри поглинання кожної з фракцій і, виходячи з отриманих даних, обчислюють концентрацію кожної амінокислоти. Таким чином одержують серію кривих, що відповідають послідовному виходу амінокислот. Природу кожної амінокислоти встановлюють за об'ємом елюента, що витрачається на зняття цієї амінокислоти із смоли, з урахуванням заздалегідь проведених калібрувальних дослідів;

б) з автоматичним аналізатором, що працює за таким принципом. Рідина, що витікає з колонки, за допомогою насоса змішується з нінгідрином. Суміш проходить спочатку через водяну баню, де підігрівається, а потім через кювету спектрофотометра, який безперервно реєструє поглинання світла при 570 нм (фіолетове забарвлення нінгідрииа зі всіма амінокислотами) і при 440 нм (жовте забарвлення проліна з нінгідрином). Дані спектрофотометра реєструються на стрічці, що рухається, або на листі паперу. Площа, яка обмежена кривою і базовою лінією, пропорційна концентрації відповідної амінокислоти.

Електрофорез. Завдяки своєму електричному заряду амінокислоти можуть переміщуватися в електричному полі (рис. 1). Проте через малий розмір молекул вони легко дифундують і тому їх розділення можливе тільки при використанні твердої основи, наприклад паперу або крохмалю. Розділення йде по групах. Так, наприклад, при рН 4,0 дикарбонові амінокислоти ще залишаються кислотами і аніонами. Вони прямують до позитивного полюса – аноду. Нейтральні ж і лужні амінокислоти рухаються в цих умовах до негативного полюса – катоду, оскільки при рН 4,0 вони несуть позитивний заряд.

 

Рис. 1. Прилад для проведення електрофорезу (а), електрофореграма (b).

Будова білків

Всі білки являються високомолекулярними поліпептидами. Умовну границю між великими поліпептидами і білками проводять в області молекулярних мас 8000 – 10000.

Характеристика зв’язків амінокислот у молекулах білка. Для нативних білків, що мають специфічні фізико-хімічні та біологічні властивості, характерним є наявність нижчих та вищих рівнів структури. Для кожного рівня структури характерні певні види зв’язків, за рахунок яких відбувається надійна стабілізація білкових молекул.

Припущення відносно сил, що забезпечують утворення стабільних структур, було висловлене Д.Л. Талмудом та С.Є. Бреслером у 1944 p. Наступні дослідження дали змогу на основі цих припущень сформулювати загальні положення про сили, що стабілізують білкові молекули. Згідно з даними положеннями структура білків є результатом дії таких сил: пептидних зв’язків між CO–NH–групами амінокислот; дисульфідних зв’язків, які утворюються між залишками амінокислоти цистеїну; водневих зв’язків між киснем карбонільної і воднем імінної груп пептидних угруповань; гідрофобної взаємодії.

Отже, стабілізація структури білкової молекули забезпечується за рахунок ковалентних зв’язків та сил слабкої взаємодії. При цьому в стабілізації кожного виду структури вирішальна роль належить одному із зв’язків, а решта відіграють допоміжну роль. Так, ковалентні зв’язки (сили міцної взаємодії) забезпечують стабілізацію первинної і третинної структур (пептидний та дисульфідний зв’язки). Решта видів структури стабілізується за рахунок сил слабкої взаємодії водневих та іонних зв’язків, сил Ван-дер-Ваальса, гідрофобної взаємодії тощо.

Пептидний зв’язок. Коли карбоксильна і аміногрупа з’єднуються, утворюючи пептидний зв’язок, амінокислоти перетворюються в амінокислотні залишки, утворюючи пептид.

Схематично даний процес можна записати так:

Пептид складається із двох або більше амінокислотних залишків, з’єднаних пептидними зв’язками.

Пептиди, які складаються більше ніж з 10 амінокислотних залишків називаються, поліпептидами.

Утворений дипептид може взаємодіяти з наступною амінокислотою, утворюючи трипептид, тетрапептид і т.д. Необхідно відмітити, що трипептид містить три залишки амінокислот, але не три пептидних зв’язки:

Структуру пептиду прийнято зображати так, щоб N-кінцевий залишок (містить вільну NH2–групу) розміщувався зліва, а С-кінцевий залишок (з вільною карбоксильною групою) – справа. Такий пептид має тільки одну вільну a-аміногрупу і тільки одну a-карбоксильну групу. Це твердження справедливе для всіх поліпептидів, які утворені тільки амінокислотними залишками, з’єднаними одна з одною пептидними зв’язками.

В деяких пептидах кінцева аміногрупа або кінцева карбоксильна група модифікована (прикладом може бути ацильне похідне аміногрупи або амід карбоксильної групи), і таким чином, не являється вільною.

Лінійна послідовність амінокислотних залишків в поліпептидному ланцюзі називається первинною структурою пептиду. Для того, щоб встановити первинну структуру пептиду необхідно встановити число, хімічну структуру і порядок розміщення всіх амінокислотних залишків, які входять до його складу.

Заміна всього лише однієї амінокислоти на іншу в лінійній послідовності із 100 і більше залишків може призвести до зниження або до повної втрати біологічної активності пептиду, а це сприятиме розвиткові серйозних наслідків (наприклад, виникнення серповидної анемії).

Поліпептиди (білки) можуть містити 100 і більше амінокислотних залишків, тому традиційні структурні формули виявляються завеликими для позначення молекули пептиду. В даному випадку користуються “хімічним скорописом”, використовуючи трьохбуквенні або однобуквені позначення амінокислотних залишків (табл. 1). При найменуванні пептиду, його розглядають як похідне С-кінцевого амінокислотного залишку.

Водневий зв’язок досить поширений в хімічних сполуках. Він утворюється між ковалентно зв’язаним атомом водню, який має частковий позитивний заряд, та іншими ковалентно зв’язаними атомами, що мають негативний заряд. У молекулах білка водневий зв’язок найчастіше утворюється при взаємодії атома водню імінної групи залишку однієї амінокислоти з атомами кисню карбонільної групи залишку іншої амінокислоти:

Водневий зв’язок у молекулі білка може бути внутрішньоланцюговим (з’єднує окремі витки однієї спіралі) і міжланцюговим (з’єднує різні поліпептидні ланцюги). У нативних білках цей тип зв’язку може утворюватися не лише між воднем і киснем пептидних груп, а й між іншими функціональними групами поліпептидного ланцюга.

Водневий зв’язок, на відміну від інших зв’язків, досить слабкий. Енергія цього зв’язку дорівнює 6 кДж, тоді як, наприклад, енергія зв’язку між атомами вуглецю становить близько 250 кДж. Тому водневий зв’язок легко утворюється і легко руйнується при звичайних умовах. Він відіграє важливу роль в утворенні вторинної, третинної і четвертинної структур білка.

Дисульфідний зв’язок. Відомо, що до складу переважної більшості білків входять залишки амінокислоти цистеїну. Цей досить міцний ковалентний зв’язок утворюється внаслідок відщеплення атомів водню від сульфгідрильних груп двох амінокислотних залишків цистеїну. Дисульфідний зв’язок, як і водневий, може бути внутрішньо ланцюговим (а) і міжланцюговим (б).

Схему утворення дисульфідного зв’язку можна показати так:

а)

б)

Дисульфідні зв’язки мають важливе значення для формування третинної структури білків. Руйнування цих зв’язків призводить до дестабілізації даного рівня структури і втрати білком його біологічної активності.

Іонний зв’язок утворюється при наявності у поліпептидних ланцюгах молекул білків залишків моноамінодикарбоновнх і діаміномонокарбонових кислот. Вільні карбоксильні та амінні групи цих залишків амінокислот перебувають переважно в іонізованому стані, в результаті чого між ними виникає електростатична взаємодія:

Іонний зв’язок відіграє важливу роль при утворенні третинної і, можливо, четвертинної структур білків.

Гідрофобний зв’язок утворюється внаслідок міжмолекулярної взаємодії (сил Ван-дер-Ваальса) між гідрофобними (неполярними) радикалами таких амінокислот, як аланін, валін, лейцин, ізолейцин, фенілаланін тощо:

Гідрофобний зв’язок має важливе значення для стабілізації третинної і четвертинної структур білків.

Структури білків. Основополагаючим моментом в нашому розумінні принципів організації білків послужило виявлення того факту, що поліпептидні ланцюги можуть знаходитися у високо впорядкованій конформації, яка стабілізується водневими зв’язками між пептидними групами. Внаслідок існування таких конформацій розрізняють рівні структурної організації білка (рис. 2).

Рис. 2. Структури білкової молекули

Первинна структура білків – це послідовність амінокислот, зв’язаних пептидним зв’язком–СО–NH–. Унікальність первинної будови зумовлює функції та властивості білків, у тому числі імунні. Первинна будова білка кодується генетичним кодом у ДНК. Всі атоми пептидної групи компланарні, тобто знаходяться у одній площині, тому що мають делокалізовані p-електрони; О та Н розташовані у транс-положенні. Пептидний зв’язок існуючи на 90% в кетонній (транс-положення) та на 10% у енольній формах (таутомерія), здатен утворювати по два водневі зв’язки з полярними групами та з іншими пептидними зв’язками (зв’язки, що утворені проліном утворюють тільки один водневий зв’язок). Первинна структура білків є основою для самоорганізації цих молекул у просторі структури (рис. 3).

При вивченні первинної структури використовують як хімічні агенти, так і ферменти.

Протеолітичні ферменти. Це ферменти, що каталізують гідролітичний розрив пептидних зв'язків. Вони діляться на дві групи:

1) екзопептидази, які відщеплюють кінцеву амінокислоту, – амінопептидаза відділяє N-кінцеву амінокислоту, карбоксипептидаза відщеплює С-кінцеву амінокислоту;

2) ендопептидази, які діють на зв'язки між некінцевими амінокислотами. Ендопептидази володіють специфічністю відносно амінокислот, зв'язки яких гідролітично розриваються (з приєднанням елементів молекули води), – трипсин розриває молекулу на рівні карбоксилів лізину і аргініну; хімотрипсин розриває пептидні зв'язки тільки по карбоксилах ароматичних амінокислот: фенілаланіна, тирозина і триптофана.

Пепсин також є ендопептидазою, але його специфічність не цілком вивчена.

Рис. 3. Первинна структура білкової молекули

Визначення амінокислотного складу. Починають з повного гідролізу білка, тобто з розриву всіх пептидних зв'язків з приєднанням води і звільненням амінокислот. Гідроліз здійснюють дією 6N HCl при 110°C протягом 24 або 48 ч в запаяній під вакуумом ампулі (більш короткочасний гідроліз може виявитися неповним, при більш тривалому виникає небезпека руйнування невеликої частини амінокислот). Необхідно провести ще і лужний гідроліз невеликої кількості білка обробкою 2 – 4N NaOH для отримання триптофана, який при кислотному гідролізі руйнується. Отриману таким чином суміш амінокислот фракціонують і аналізують хроматографією на катіонообмінній смолі по описаному вище методу Мура і Стейна.

Визначення N-кінцевої амінокислоти. Для цієї мети можна використовувати різні методи (див. вище).

– метод Сенгера з динітрофторбензолом, ДНФБ.

– метод Едмана з використанням фенілізотіоціаната.

– дія амінопептидази.

Визначення С-кінцевої амінокислоти. Мається на увазі амінокислота, яка несе вільну COOH-групу і стоїть на кінці поліпептидного ланцюга. Її визначення досить важке (див. вище).

Визначення амінокислотної послідовності. Білок ділять на декілька зразків, які потім обробляють окремо. Один зразок, наприклад, гідролізують соляною кислотою на холоді, інший обробляють трипсином, третій хімотрипсином. Для кожного зразка одержують суміш пептидів різної довжини. Пептиди фракціонують методами електрофореза або хроматографії на іонообмінних смолах. Ці смоли схожі на ті, за допомогою яких фракціонують амінокислоти, але сітка полімеру в них менш тісна, що забезпечує проникання більш великих молекул всередину смоли і їх затримання.

Для кожного з поліпептидних фрагментів проводять обробку такого ж характеру, як для цілого білка, і якщо в результаті утворюються не дуже довгі пептиди, то вдається розшифрувати первинну структуру кожного з них, використовуючи, зокрема, метод Едмана. Потім встановлюють порядок взаємного розташування пептидів в молекулі білка. Цього досягають шляхом зіставлення пептидів, отриманих різними способами гідролізу, в яких амінокислотні послідовності частково перекриваються.

Метод „відбитків пальців” (фінгерпринт). Іноді виникає необхідність порівняти два близьких за своєю природою білка. Структура одного з них відома, і бажано визначити будову другого білка, не проводячи заново повного визначення його структури. В цьому випадку прагнуть вичленувати ті ділянки білків, які неідентичні. Для цього обидва білки спочатку піддають протеолізу, наприклад трипсином, а потім наносять в кут листа паперу гідролізат і проводять хроматографічне розділення в одному напрямі і електрофорез в перпендикулярному напрямі. Папір висушують і фарбують пептиди, що розділилися на площі листа. При цьому виявляють, що більшість плям розташована однаково, тобто, відповідає однаковим пептидам, і лише один або декілька пептидів – відмінні. Ці пептиди походять з тих частин молекул двох білків, які не ідентичні. Їх можна проаналізувати.

Цим методом Інгрему вдалося зіставити два гемоглобіни (білки, утворені поліпептидними ланцюгами двох типів, кожен з яких містить більше 140 амінокислот). Один з гемоглобінів був нормальним, а другий – виділений з крові хворого дрепаноцитозом (захворювання крові, відоме також під назвою серповидноклітинної анемії). Відмінність між двома гемоглобінами виявилася тільки в одному пептиді і була обумовлена заміною лише однієї амінокислоти.

Вторинна структура білка – це просторове розміщення первинної будови у вигляді a-спіралі або b-складчатої будови. Стабілізується вторинна структура численними водневими зв’язками між різними пептидними групами =C=O...H–N=. Спіральна конфігурація a-спіралі має гвинтову симетрію, водневі зв’язки утворюються між пептидними групами першим та четвертим амінокислотних залишків, причому бокові радикали не приймають участь у утворенні a-спіралі. Звичайно a-спіраль є у більшості білків, або ж як фрагмент молекули білка. b-складчаста структура зустрічається у структурних білків, частіше у білку містяться обидві структури.

Характеристика конформацій поліпептидів

Спіральна структура. Модель просторової конфігурації поліпептидного ланцюга у вигляді спіралі вперше запропонували Л. Полінг і Р. Корі в 1951 p. на основі даних рентгеноструктурного аналізу білків і пептидів (рис. 4). Спіральна структура утворюється, як правило, тоді, коли в усіх ланках поліпептидного ланцюга кути повороту навколо простих зв’язків близькі до 60 або 45°. Це приводить до поступового закручування поліпептидного ланцюга та утворення a-спіралі. Згідно з розрахунками Л. Полінга і Р. Корі, a-спіраль є найоптимальнішою в енергетичному відношенні, оскільки має найменший рівень вільної енергії. Стабілізується a-спіраль внутрішньомолекулярними водневими зв’язками, які виникають між воднем іміногрупи та киснем карбонільної групи пептидних угрупувань остову поліпептидного ланцюга.

Рис. 4. Вторинна структура: (а) – площинна; (b) – α-спіраль;

(c) – вид зверху; (d) – вид збоку.

Усі водневі зв’язки, які стабілізують a-спіраль, приблизно паралельні до осі спіралі і колінеарні один одному, що відповідає мінімуму вільної енергії. Радикали залишків амінокислот розміщуються на периферичних ділянках утвореного a-спіраллю уявного циліндра по різні боки від осі спіралі. Кислотно-основні властивості радикалів можуть забезпечувати гідрофобну або гідрофільну природу окремих ділянок поверхні a-спіральної структури.

Велика кількість неполярних радикалів, згрупованих на одному боці a-спіралі, утворює так звані гідрофобні кластери, або дуги, які можуть створювати умови для зближення окремих a-спіральних ділянок. Це має певне значення при формуванні надвторинних структур.

Радикали амінокислот помітно впливають на утворення і стабілізацію a-спіралі. Так, проведені дослідження з поліаланіном, радикали якого за величиною незначні і не мають заряду, свідчать про те, що він самовільно утворює a-спіральну структуру у водному розчині при рН=7,0. Поліпептид на основі іншої амінокислоти – лізину, тобто полілізин, при цьому самому значенні рН a-спіралі не утворює, а має вигляд невпорядкованого клубка. У нейтральному середовищі радикали лізину мають позитивний заряд, що перешкоджає їм зближуватися, оскільки діють сили відштовхування, причому ці сили переважають сили, які необхідні для утворення внутрішньоланцюгових водневих зв’язків. Подібні експерименти було проведено з поліамінокислотами. Це дало змогу встановити, що деякі амінокислоти (аланін, валін, лейцин, метіонін, фенілаланін, тирозин, триптофан, гістидин тощо) сприяють утворенню a-спіралі, особливо коли вони розміщені поряд у поліпептидному ланцюгу. Інші амінокислоти, такі як лізин, аргінін, гліцин, серин, треонін, аспарагінова і глутамінова кислоти сприяють дестабілізації a-спіралі. Разом з цим окремі амінокислоти, зокрема пролін і оксипролін, просторово в спіральну структуру не вкладаються. На цих ділянках напрям поліпептидного ланцюга змінюється на 103°, і спіральна структура порушується.

Наведені вище дані свідчать проте, що поліпептидні ланцюги у молекулах білка спіралізовані не повністю. Для кожного білка характерний певний ступінь спіралізації поліпептидного ланцюга. Наприклад, для білка гемоглобіну ступінь спіралізації дорівнює 75%, для альбуміну курячого яйця – 45, а для рибонуклеази – лише 17%. Тому під вторинною структурою білка розуміють певне співвідношення спіралізованих ділянок поліпептидного ланцюга з лінійними, нерегулярними, аморфними переходами, в яких порушені водневі зв’язки.

a-Спіраль характеризується такими параметрами. На один виток a-спіралі припадає 3,6 залишки амінокислот, а крок спіралі (відстань між витками) дорівнює 0,54 нм. Кут підйому витка дорівнює 26°, а висота одного залишку амінокислоти досягає 0,15 нм. Період ідентичності, тобто довжина відрізка спіралі, яка повністю повторюється по ходу її, становить 2,7 нм і включає 18 залишків амінокислот. Число атомів витка, який стабілізується водневими зв’язками, 13. Отже, формула a-спіралі має такі параметри: 3,613-спіраль.

a-Спіраль може бути ліво- або правозакрученою (рис. 5). У білках, як правило, правозакручена a-спіраль, що певною мірою пов’язано з тим, що до складу білків входять амінокислоти L-ряду. Для a-спіралі характерні певні особливості – a-спіраль має гвинтову симетрію і регулярність витків.

Пошарово-складчаста структура. Це різновид вторинної структури білків, яка має зигзагоподібну конфігурацію і характерна для розміщених паралельно витягнутих ділянок одного поліпептидного ланцюга (крос-b-форма) або кількох поліпептидних ланцюгів (повна b-структура) (рис. 6). У першому випадку структура стабілізується водневими зв’язками в межах окремих ділянок одного поліпептидного ланцюга (внутрішньо ланцюгові водневі зв’язки), а в другому – водневими зв’язками між суміжними ділянками кількох поліпептидних ланцюгів (міжланцюгові водневі зв’язки).

Рис. 5. a-Спіраль може бути ліво- або правозакрученою

Рис. 6. b-структура (а) – антипаралельна; (b) – паралельна

У нативних білках зустрічаються обидва види пошарово-складчастої структури. Крім того, пошарово-складчаста структура має ще таку її різновидність, як b-вигин (реверсний розворот), який виникає тоді, коли поліпептидний ланцюг робить розворот назад та орієнтується вздовж самого себе в зворотному напрямку (рис. 7).

Рис. 7. b-вигин

Уперше b-структуру, як один з варіантів просторової конфігурації поліпептидного ланцюга, було описано в 1941 p. У. Астбері на основі рентгеноструктурного аналізу білка b-кератину. В 50-х роках Л. Полінг і Р. Корі докладно вивчили особливості b-структури, її види, стабілізацію тощо. До білків з b-структурою належать фіброїн шовку, кератин волосся та інші фібрилярні білки. У глобулярних білків у формуванні b-структур беруть участь до15 % залишків амінокислот.

Отже, просторова конфігурація поліпептидннх ланцюгів значною мірою визначається видом білка. Так, у фібрилярних білків вторинна структура може бути представлена лише спіральними або лише пошарово-складчастими структурами. В глобулярних білках можливі різні варіанти:

а) частина структури – a-спіраль, друга частина – складчастий лист, частина – статичний клубок;

б) частина структури – спіраль, частина – статичний клубок;

в) складчастий лист – статичний клубок;

г) уся структура – статичний клубок.

Третинна структура – це просторове розташування вторинної будови у вигляді глобули (куля, еліпсоїд) або фібріли (товщина менше довжини у 7 або більше разів). Ця будова стабілізується зв’язками між радикалами: дисульфідними (цис-цис), водневими (асн-сер), гідрофобними (Ван-дер-Ваальсові між неполярними радикалами), складно-ефірними (між асп, глу з одного боку та сер, тре з другого), просто-естерними (сер-тре), ізопептидними (між асп та глу з одного боку та ліз, арг, гіс з другого) та іонними (між цими ж амінокислотними залишками). У місцях локалізації проліну (та оксіпроліну) ланцюг якби зламується (один водневий зв’язок, жорсткий зв’язок С-N у самому радикалі амінокислоти), загин ланцюга також проходить у місцях локалізації гліцину, де радикал – атом водню. Звичайно у центрі водорозчинного білка містяться гідрофобні амінокислотні залишки, а навколо цього ядра ланцюг з гідрофільних амінокислот, що зв’язують молекули води (рис.2).

Четвертинна структура – це об’єднання декількох первинних структур (субодиниць) у одну молекулу з участю різних зв’язків (рис. 2). Наприклад, молекула гемоглобіну складається з двох a- (по 142 амінокислотних залишки) та двох b- (по 146 амінокислотних залишків) субодиниць, причому кожна субодиниця несе по одному гему.

П’ятиринна структура характерна для білків, що виділені у кристалічному стані.

Фізико-хімічні властивості білків

Розчинність. Більшість білків розчинна у воді і у водних розчинах. Розчинність залежить від будови молекул білка і іонного складу середовища, зокрема від іонної сили і рН.

Іонна сила (m) розчину іонізованої солі визначається як половина суми концентрації кожного іона, помножена на квадрат його валентності (тобто заряду):

де с – концентрація кожного з іонів; Z – електричний заряд іона (електровалентність).

При низькій іонній силі іони, особливо однозарядні, сприяють розчиненню білка, нейтралізуючи його заряджені групи. Так, деякі білки нерозчинні у воді, але розчиняються в розбавлених розчинах NaCl. При високій іонній силі має місце зворотна дія іонів – вони сприяють осадженню білків. Все відбувається так, ніби то між білками і іонами має місце конкуренція за молекули води. Це феномен висолювання. Залежність розчинності білків від іонної сили описується рівнянням:

де S – розчинність білка; m – іонна сила середовища; b – константа, залежна від природи білка і середовища; К' – константа висолювання.

У напівлогарифмічному масштабі крива висолювання є прямою лінією, характерною для кожного даного білка.

Залежність розчинності від рН виражається, як правило, U-подібною кривою з мінімумом поблизу ізоелектричної точки. При рНi сили відштовхування між молекулами білка стають мінімальними і виникає тенденція до утворення агрегатів, які випадають в осад.

Органічні розчинники, у тому числі етанол і ацетон, осаджують білки в результаті їх денатурації. Її можна, проте, уникнути, працюючи при низькій температурі.

Денатурація білків. Вторинна і третинна структури білка обумовлені наявністю слабких зв’язків. У випадку розриву їх ці структури зникають. Такий білок називають денатурованим, його молекула стає невпорядкованою і набуває характеру „статичного клубка”. Якщо денатуруючий агент діє не дуже сильно, молекула може втратити свою структуру не повністю. Як правило, денатурація носить необоротний характер, але в деяких випадках вона буває оборотною, тобто при видаленні денатуруючих агентів білок може „ренатурувати”. Денатурація часто супроводжується осадженням білка, його молекули набувають здатності до утворення агрегантів, не здатних розчинятися в розчині. У більшості випадків у результаті денатурації білки втрачають свої біологічні властивості, наприклад ферментативну активність.

Найважливішими денатуруючими агентами є:

підвищення температури, при якій розриваються водневі та гідрофобні зв’язки;

кислоти і основи, надаючи підвищені заряди, дестабілізують загальну структуру, діючи особливо на електростатичні зв’язки;

органічні розчинники суттєвим чином впливають на гідрофобні зв’язки. Але при зниженій температурі можуть не проявляти денатуруючого ефекту;

сечовина і гуанідин утворюють з білком численні водневі зв’язки і тим самим дезорганізовують його структуру. Однак часто при видаленні цих факторів спостерігається ренатурація білкової молекули.

Денатурація ніколи не порушує ковалентних зв’язків, але вона може зробити доступними для розчинників і різних реактивів радикали, які раніше були сховані в глибині молекули.

Отже, білки у воді можуть утворювати колоїдні розчини за рахунок зарядів (обумовлених зарядженими амінокислотними залишками) та зв'язування води залишками полярних гідрофільних амінокислот. Осадження білків проводять віднімаючи воду та нейтралізуючи заряд (етанол, формальдегід, солі важких металів, розчини кислот, лугів, солей, трихлороцтової та сульфосаліцилової кислот, нагріванням). Солі типу сульфату амонію розривають іонні зв'язки, які легко відновлюються, спирт та ацетон віднімають воду, що призводить до осадження, але за умов видалення цих факторів білки відновлюють розчинність. Сильні фактори приводять до незворотнього осадження – денатурації, при цьому порушується просторова (третинна та вторинна) структура білків і зникають їх життєво важливі (нативні) функції. Денатуровані білки розвертають ланцюг, відкриваючи скриті групи, легко розщеплюються.

Електролітичні властивості. Білки є амфотерними електролітами. Групи NH2 і COOH за винятком тих, які належать кінцевим амінокислотам, не вносять внеску в утворення сумарного заряду білка, оскільки вони входять до складу пептидних зв'язків і втрачають при цьому свої заряди. Заряд білка визначається дистально розташованими групами полярних амінокислот, як кислими (Глу, Acп, Тир), так і основними (Ліз, Apг, Гіс).

У залежності від амінокислотного складу білки можуть бути кислими (багато глутамінових та аспарагінових амінокислотних залишків), лужними (багато залишків лізіну, аргініну, гістидину), нерозчинними (багато залишків гідрофобних амінокислот). У лужному середовищі білок поводить себе як поліаніон, його сумарний заряд негативний, якщо білок, розчинений в лужному буфері, помістити в електричне поле, то він мігрує у напрямку до анода. Навпаки, в кислому середовищі білок поводиться як катіон, він несе позитивний заряд і в електричному полі рухається у напрямку до катода.

При деякому проміжному значенні рН сума зарядів виявляється рівною нулю; аналогічно тому, як це було прийнято для амінокислот, таке значення рН називають ізоелектричною точкою. Ізоелектрична точка білків варіює між значеннями pHi=1 (пепсин) і pHi=10 (гістон). Для більшості білків рНi лежить в більш вузьких межах – від 4 до 7.

Ця їх властивість була використана Тізеліусом, який в 1937 р. запропонував новий метод аналізу суміші білків – електрофорез.

Розчин білків в буфері, тобто при певному значенні рН, заливають в нижню частину U-подібної трубки, доливають обидва кінці трубки тим же буфером і вмонтовують в них електроди. Якщо проводити електрофорез в лужному розчині, то всі білки заряджаються негативно і починають переміщуватися у напрямку до анода. Швидкість переміщення (електрофоретична рухливість) білка залежить від його рНi і від величини сумарного заряду при даному рН буфера. Таким чином, різні білки мігрують з різною швидкістю і відділяються один від одного. Межі між білками можна спостерігати за допомогою оптичної системи, яка реєструє зміну коефіцієнта заломлення.

Метод електрофореза в рідкому середовищі виявився достатньо складним, у зв'язку з чим Тізеліус запропонував ідею твердого носія (спочатку використовувався папір). Потім були використані інші типи носіїв – гель крохмалю, поліакриламідний гель, ацетат целюлози, які у принципі дозволяють отримати краще розділення білків, ніж папір. Техніка отримала назву зонального электрофореза.

Електрофорез в поліакриламідному гелі є дуже тонким методом аналізу. В даний час він отримав надзвичайно широке розповсюдження. Завдяки можливості задавати пористість гелю швидкість міграції білка тут залежить не тільки від його заряду, але також від форми молекули і від молекулярної маси (великі білки сильніше затримуються сіткою гелю і мігрують повільніше). Таким чином, цей метод є не тільки електрофоретичним, але в рівному ступені і гель-фільтраційним.

Антигенні властивості. Білки, як, втім, і деякі інші високомолекулярні сполуки, є антигенами. Це означає, що якщо білок, виділений з тканин однієї тварини, потрапляє в кров тварин іншого виду, то в певних клітинах останнього синтезується спеціальний білок, який поступає в кров, де він вступає в контакт з введеним препаратом – антигеном, пригнічуючи його можливу токсичну дію. Цей білок, що з'являється в організмі тварини у відповідь на введення чужорідної субстанції, називається антитілом.

Реакції такого роду називають імунологічними реакціями. Вони дозволяють зрозуміти, чому певні захворювання бактерійного або вірусного походження не можуть з'явитися двічі у одного і того ж індивідуума, а також механізм вакцинації і сироваткової терапії. Вони пояснюють також і відторгнення трансплантованих тканин. Якщо змішати в певній пропорції антигени і відповідні їм антитіла, то можна спостерігати утворення осаду. Це явище (преципітація) лежить в основі самого споживаного методу виявлення білків, заснованого на взаємодії антиген – антитіло (рис. 8).

Рис. 8. Антигенні властивості білка

Імунологічні реакції давно вже дозволили показати, що білки, нібито однакові у всіх видів тварин, насправді несуть у своїй структурі міжвидові відмінності. Розшифровка первинної структури відповідних білків підтвердила існування міжвидових відмінностей. Проте, якщо до антитіл, утворених у відповідь на ін'єкцію чужорідного білка А, додати білок схожої будови А', то можна спостерігати появу осаду, хоча спорідненість антитіл до білка А' виявляється набагато слабіше, ніж до білка А. Говорять, що має місце перехресна реакція. Вона виявляється в тих випадках, коли А і А' це аналогічні білки, отримані від дуже близьких видів (людина і мавпа, споріднені бактерії).

Резюмуючи, можна сказати, що реакція антитіло – антиген in vitro між сироваткою крові і якимсь білком реалізується при виконанні наступних умов: 1) тварині, від якої була отримана сироватка, вводять той же або дуже близький білок; 2) введений білок є чужорідним для тварини.

Та частина білка, яка безпосередньо бере участь в утворенні комплексу з антитілом, називається антигенною детермінантою. Антигенні детермінанти реагують із специфічними ділянками антитіл (не менше двох однакових ділянок на молекулу), причому в основі відповідних взаємодій лежить принцип комплементарності форм двох взаємодіючих молекул. Необхідною умовою взаємодії є інтактність структур обох білків – у разі денатурації хоча б одного з них реакція антиген – антитіло не відбувається. Асоціація антигена з антитілом здійснюється за рахунок слабих, нековалентних зв'язків.

Визначення молекулярної маси білків

Молекулярна маса білків велика, і для їх визначення часто доводиться використовувати зовсім інші методи, ніж в органічній хімії.

Осмотичний тиск. Якщо речовина, розчинена у воді, відокремлена від чистої води мембраною, проникною для води і непроникною для цієї речовини, то вода поступатиме всередину об'єму, обмеженого мембраною, в якому знаходиться розчин. Причина цього лежить в необхідності компенсувати більш низьку концентрацію води усередині об'єму. В результаті цього рівноважному стану відповідатиме більш високий рівень рідини усередині об'єму в порівнянні з рівнем води, що знаходиться зовні. Обумовлений ним надмірний тиск рівний осмотичному тиску. Величина тиску визначається співвідношенням:

де p – осмотичний тиск в атмосферах; R – універсальна газова постійна; С – мольна концентрація розчиненої речовини; T – абсолютна температура.

Величину С можна замінити на , де с – концентрація в грамах на літр, а M – молекулярна маса.

Тоді:

, звідки:

Схематичний дослід ставиться таким чином. Розчин білка в буфері заливають у мішечок, виготовлений з непроникної для білків мембрани і забезпечений трубкою, по якій може підійматися рідина. Ця трубка одночасно служить і манометром. Все це занурюють в посудину, куди налитий чистий буфер. Після досягнення рівноваги вимірюють висоту рідини в трубці і по ній обчислюють p. Цей метод придатний для не дуже великих білків, в протилежному випадку підйом рідини буде нікчемно малий. Важливо також, щоб в розчині знаходився білок тільки одного типу, інакше буде отримана цифра середньої молекулярної маси.

Аналітичне центрифугування. Центрифугування можна використовувати для фракціонування субклітинних частинок. З його допомогою можна також і осаджувати білки. Відцентрова сила прагне осадити білки на дно центрифужної пробірки, але завдяки дифузії молекули білка мають тенденцію мігрувати із зони високої концентрації в області більшого розбавлення. Застосовують два способи дослідження.

а) при відносно малій швидкості обертання після закінчення достатньо тривалого періоду часу відцентрова сила і дифузія приходять в рівновагу. Рівновага седиментації дозволяє визначити молекулярну масу білка при умові, якщо відомі параметри, які відносяться до його дифузійної здатності. Незручність цього методу в його тривалості. Арчібальд запропонував модифікацію, що дозволяє скоротити тривалість центрифугування до 1 – 2 годин.

б) при великій швидкості обертання відцентрова сила така велика, що сили дифузії виявляються в порівнянні з нею дуже малими. В цих умовах можна визначити швидкість седиментації білка. Утворюються величини в діапазоні від 1 до 200 одиниць Сведберга.

Дія відцентрової сили залежить не тільки від молекулярної маси білка, але також від форми його молекули і від зв'язків між білком і молекулами оточуючої його води.

Вимірювання такого роду проводять в аналітичних ультрацентрифугах, які служать стандартними приладами в цій області. Цей оптичний пристрій дозволяє стежити за переміщенням білка по пробірці в ході центрифугування. Осадження білка спостерігають як гауссову криву, що переміщується уздовж осі. Площа, між цією кривою і віссю абсцис, пропорційна концентрації білка. Гауссова крива утворюється в результаті відхилення світлового променя. Проходячи через розчин, промінь зустрічає на своєму шляху білок, коефіцієнт заломлення якого вище, ніж у розчинника.

Через певні проміжки час проводиться фотографування і таким чином обчислюється швидкість переміщення кривої, а отже, і швидкість седиментації білка. Результати цих вимірювань служать відправною точкою для визначення молекулярної маси.

Світлорозсіювання. Якщо освітлювати розчин солі дуже тонким пучком світла, то він проходить крізь розчин по прямій лінії. Якщо виконати те ж саме з розчином білка, то можна побачити, що частина світла розсіюється у всіх напрямках. Це явище обумовлено тим, що розміри білкових молекул співвимірні з довжиною хвилі світла і поводять себе як маленькі дзеркала, повернені у всі сторони, куди вони і розсіюють падаюче світло. Можна виміряти інтенсивність світла, яке розсіюється під різними кутами по відношенню до падаючого променя. Відношення інтенсивності світла, яке розсіяне під певним кутом (i), до інтенсивності падаючого світла (I) пропорційно концентрації білка (с) і його молекулярній масі (M), тобто:

де К – константа, залежна від конструкції приладу.

Гель-фільтрація. Ми вже говорили про те, що хроматографія на декстрані дозволяє розділяти речовини за їх молекулярними масами. Хроматографічну колонку калібрують, використовуючи для цього ряд білків з відомою молекулярною масою, потім визначають молекулярну масу досліджуваного білка, шляхом зіставлення і екстраполяції. У такий спосіб знаходять приблизне значення молекулярної маси. Метод чутливий не тільки до молекулярної маси, але і до форми білкової молекули. Для білків однакової конфігурації об'єм рідини, яка елюює білок з колонки, обернено пропорційний логарифму його молекулярної маси.

Хімічні методи. Фізичні методи завжди дають наближені результати. Їх можна доповнити даними, отриманими за допомогою хімічних методів, які самі по собі також недостатні.

Наприклад, хочуть визначити молекулярну масу гемоглобіну. Аналіз показує, що цей білок містить 0,34% заліза. Якщо вважати, що на кожну молекулу гемоглобіну доводиться один атом заліза, то, виходячи з атомної маси заліза 56, можна знайти молекулярну масу білка із співвідношення:

   ,    

Фізичні методи дають для гемоглобіну величину молекулярної маси близько 65 000. Звідси можна визначити, що точна молекулярна маса гемоглобіну рівна 17000 ´ 4 = 68000 і, що кожна його молекула містить чотири атоми заліза.

Електронна мікроскопія. В даний час електронна мікроскопія дає збільшення в 20 Å, що дозволяє бачити білки. Підраховувавши число білкових глобул, можна отримати приблизну величину молекулярної маси. Для цього достатньо знати концентрацію білка в розчині і об'єм, який спостерігається в мікроскоп. Для того, щоб визначити цей об'єм, до розчину додають відоме число частинок латексу, які теж можна бачити в полі мікроскопа і порахувати.

Визначення молекулярної маси білкових субодиниць. В основному використовують два методи.

Електрофорез в поліакриламідному гелі з додецилсульфатом натрію (ДСН). Ми вже говорили, що при електрофорезі в поліакриламідному гелі швидкість пересування молекул білка залежить від їх заряду, форми і молекулярної маси. Якщо білок обробити денатуруючим детергентом ДСН, то, з одного боку, він денатурує і втрачає свою специфічну форму, а з іншою – розпадається на субодиниці, які приєднують ДСН і набувають однакового негативного заряду. Якщо ці субодиниці піддати електрофорезу в поліакриламідному гелі, то швидкість їх переміщення залежатиме тільки від молекулярної маси, причому вона виявляється обернено пропорційною логарифму молекулярної маси. Якщо білок складався з декількох субодиниць різної молекулярної маси, то виявиться декілька смуг.

Гель-фільтрація у присутності сечовини. Молекулярну масу субодиниць можна визначати і хроматографією на декстрані, якщо до проведення хроматографії додати до білка агент, який руйнує водневі зв'язки, наприклад сечовину високої концентрації.

Фракціонування білків.

Дуже часто задачею біохімічного дослідження є вивчення білків тканин або біологічної рідини. Рішення такої задачі доводиться починати з відділення різних білків один від одного, тобто, з їх фракціонування. У ряді випадків необхідно отримати досліджуваний білок в чистому вигляді і перевірити ступінь його чистоти за допомогою спеціальних критеріїв. Якщо вихідним матеріалом служать клітини тканин, то першим етапом роботи є розтирання або гомогенізація, за якою слідує діаліз, що видаляє присутні в середовищі малі молекули. Після цього послідовно використовують різні методи фракціонування.

Висолювання. Високі концентрації сульфату амонія і фосфатів лужних металів осаджують білки. Поступово збільшуючи концентрацію солі, можна послідовно висолити всі розчинні білки. Прийом використовують як перший ступінь фракціонування. Його ефективність невисока – майже завжди в результаті одержують ще суміш білків.

Ізоелектричне осадження. Варіюють рН середовища. Поблизу ізоелектричної точки білки мають тенденцію до випадання в осад. Таким шляхом вдається розділяти білки, які дуже відрізняються один від одного за ізоелектричною точкою.

Адсорбційна хроматографія. Деякі тверді речовини у вигляді порошків або гелів володіють здатністю зв'язувати білки слабими і малоспецифічними зв'язками. До їх числа відносяться оксид алюмінію, фосфат кальцію (гідроксил-апатит), силікагель, крохмаль.

Десорбцію білків можна проводити з використанням найрізноманітніших елюентів. Якщо елюція є виборчою, то за допомогою колектора фракцій можна збирати білки роздільно один від одного, а іноді в очищеному вигляді.

Хроматографія на іонообмінних смолах. Це один з найефективніших методів. Смоли, які зазвичай використовують для фракціонування амінокислот, тут непридатні, оскільки полімери, з яких виготовлені смоли, мають дуже часту сітку і білки не можуть проникати через її осередки. Проблема була вирішена шляхом закріплення іонізованих груп на твердому носії – целюлозі. Таким чином отримали хроматографічний метод, в якому одночасно має місце як адсорбція, так і іонний обмін. Як аніонообмінник використовують діетиламіноетилцелюлозу (ДЕАЕ-целюлозу), а як катіонообмінник – карбоксиметилцелюлозу (Км-целюлоза).

Розчинені в буфері білки подають на колонку, а потім елююють буфером у якому постійно змінюється рН (зростає або убуває). При цьому білки розділяються відповідно до їх зарядів і значення pHi. Їх збирають за допомогою колектора фракцій.

Хроматографія на декстрані (гель-фільтрація) дозволяє фракціонувати білки за молекулярною масою.

Афінна хроматографія (хроматографія за спорідненістю). Якщо білок здатний специфічно утворювати комплекси з певною речовиною, то цю речовину „пришивають” ковалентними зв'язками до інертного порошку носія і заповнюють ним хроматографічну колонку. Коли через таку колонку пропускають білкову суміш, то на ній затримується тільки здатний до утворення комплексу білок, який потім можна зняти відповідним елюентом. Таким шляхом вдається виділити певний білок з складної суміші.

Кристалізація. Іноді з її допомогою вдається отримати білок в чистому вигляді. Цим методом готують високо очищені ферментативні білки. Дуже часто кристалізацію ведуть з концентрованих сольових розчинів.

Аналіз і критерії чистоти білків. Описані нижче методи дозволяють, з одного боку, ідентифікувати різні білки, які входять до складу біологічного препарату (аналіз). З другого боку, з їх допомогою вдається показати, що в результаті виділення був отриманий дійсно індивідуальний білок (критерій чистоти). Це часто більш тонкі методи, ніж ті, які використовуються для фракціонування, і вимагають значно менших кількостей білка.

Фізичні методи. Зональний електрофорез. Методом електрофореза на ацетаті целюлози або в поліакриламідному гелі вдається розділяти дуже схожі між собою білки. Якщо білок, що вноситься, чистий, то електрофорез дає одиночну тонку смужку.

Електрофокусування. Проводять зональний електрофорез, але при цьому використовують спеціальну суміш буферів, яка забезпечує плавну зміну рН уздовж всієї довжини гелю. В кінці електрофореза кожний білок опиняється в тій зоні гелю, де рН буфера співпадає із значенням ізоелектричної точки білка рНi.

Аналітичне центрифугування. Чистий білок повинен давати при ультрацентрифугуванні один симетричний пік.

Колоночна хроматографія. Індивідуальний білок у різних хроматографічних системах повинен виходити з колонки одним симетричним піком.

Імунологічні методи. Імунологічні методи дозволяють проводити аналіз білкової суміші, дають можливість довести ідентичність двох білків різного походження або перевірити чистоту білка. Найбільш широко використовують два підходи.

Метод подвійної дифузії (Уден-Оухтерлоні). Беруть чашку Петрі і заповнюють її агаровим гелем. Вирізують в гелі два круглі отвори і заповнюють один з них досліджуваним препаратом, а інший – сироваткою тварини, імунізованої цим препаратом. Білок, що міститься в досліджуваному препараті (антиген), одночасно з антитілом дифундують в агарі. В тому місці, де вони зустрічаються, утворюється білий осад. Якщо досліджуваний препарат містить не один, а два білки, то мабуть, що вони будуть дифундувати з різною швидкістю. В цьому випадку утворюються дві роздільні смужки осадів. Таким чином можна встановити, скільки білків міститься в препараті. Ця техніка дозволяє вирішувати і важливу задачу ідентифікації білків. Нехай необхідно з'ясувати, чи є у складі складного білкового препарату певний білок А. Готують сироватку, що містить антитіла як проти досліджуваного препарату, так і проти білка А, і заповнюють нею центральний отвір агарової пластинки. Вирізують ще два отвори – в один з них поміщають комплексний антиген, а в інший – білок А. Між отвором, що містить антитіла, і отвором комплексного антигена утворюється декілька смуг. Між отворами антитіл і білка А, природно, утворюється лише одна смуга. Якщо ця остання смуга зливається своїм кінцем з однією із смуг попереднього набору так, що як би служить її продовженням, то можна стверджувати, що білок А входить до складу суміші. Якщо ж лінії не з'єднуються або перетинають одна одну, то це вказує на відсутність білка А в суміші. Таким чином, цей метод може бути використаний як критерій чистоти білка, так і ідентичності двох білків.

Імуноелектрофорез (Грабар і Вільямс). Якщо антиген є складною сумішшю білків, наприклад сироватки крові людини, то число білків, а отже, і число смуг преципітації стає настільки великим, що картина на агаровій пластинці стає нерозбірливою. Тому необхідно заздалегідь за допомогою електрофореза розфракціонувати білки на склі від мікроскопа, який покритий шаром агару, пропускаючи через нього електричний струм. Під дією струму білки, захоплюються буфером і розподіляються по довжині скла по обидві сторони від центрально розташованого отвору. Антитіла вносять в подовжню канавку. Феномен подвійної дифузії виявляється, як і в попередньому методі, даючи серію дуг, кожна з яких відповідає одному з білків, які радіально дифундують від того місця, куди він був перенесений дією струму. Цей метод чудовий не тільки для аналізу, але і як критерій чистоти препарату.

Класифікація білків

Для класифікації білків часто використовують функціональний принцип, тобто їх класифікують виходячи з основних функцій, які вони виконують під час метаболізму. За цим принципом білки поділяють на такі групи: каталітично-активні, білки-гормони, білки-регулятори активності геному, захисні, токсичні, транспортні, мембранні, скоротливі, рецепторні, білки-інгібітори ферментів, білки вірусних оболонок, білки з іншими функціями. Хоча функціональна класифікація теж має деякі недоліки, зокрема при класифікації біфункціональних білків, проте вважають, що вона дає змогу глибше зрозуміти взаємозв’язок структури, властивості і функції молекул білка, закономірності їх еволюції та взаємодії з іншими речовинами.

Відомо понад 2000 білків тваринного, рослинного і мікробного походження. Їх класифікують переважно за фізико-хімічними властивостями та хімічним складом. За цими ознаками білки поділяють на дві групи – прості (протеїни) і складні (протеїди). Прості білки (протеїни) складаються тільки з залишків амінокислот; це лужні гістони та протаміни, рослинні нерозчинні проламіни та розчинні глутеліни, альбуміни та глобуліни, фібрилярні білки сполучної тканини (протеіноїди). Складні білки (протеїди) складаються з білкової (апобілок) та небілкової (простетична група, кофактор) частини. Це фосфопротеїди (містять залишок ортофосфорної кислоти), металопротеїди (містять іони металів), гемопротеїди (містять гем), хромопротеїди (містять вітаміни), глікопротеїди (містять вуглеводи), ліпопротеїди (містять ліпіди), нуклеопротеїди (містять нуклеїнові кислоти). Специфічні ділянки білка, що утворені унікальним розташуванням радикалів амінокислот, які необхідні для зв'язування та виконання специфічної функції зв'язування називаються доменами. Наприклад, у деяких ядерних білків містяться домени (з N- до С-кінця): мембранозв'язуючий, сполучний (шарнірний), регулятор-зв'язуючий, ДНК-зв'язуючий, для транспортуючого білка.

Залежно від фізико-хімічних властивостей, хімічного складу і значення розрізняють такі протеїни:

Альбуміни. Ці білки містяться в крові, лімфі, лікворі, насінні рослин, мікробах. До альбумінів належать лактальбумін, сироватковий альбумін, легумелін (гороху), лейкозин (пшениці). Альбуміни висолюються сульфатом амонію та іншими нейтральними солями лише при 80 – 100%-ному насиченні розчину. Молекулярна маса альбумінів коливається від 35 тис. до 70 тис. Добре розчиняються у воді і в розчинах солей. Виконують пластичні функції в тканинах і клітинах. До складу альбумінів входять лейцин (до 15%), лізин, аспарагінова і глутамінова кислоти, а також деяка кількість вуглеводів.

Глобуліни. За формою молекул глобуліни відносяться до глобулярних білків. Розрізняють сироваткові, молочні і яєчні глобуліни. До глобулінів належать міозин, тиреоглобулін, нейроглобулін, нейростромін, едестія конопель, гліцинін сої, фазеолін квасолі. На відміну від альбумінів глобуліни не розчиняються у воді, висолюються 30 – 50%-ним розчином сульфату амонію. Молекулярна маса глобулінів – від декількох тисяч до декількох мільйонів.

Важливе значення мають глобуліни плазми крові: a, b і g. g-Глобуліни є носіями імунітету, тому їх використовують для імунізації проти різних інфекційних захворювань. Кількісне співвідношення між альбумінами і глобулінами виражається альбуміно-глобуліновим коефіцієнтом (А/Г). У клінічно здорових він рівний 2, зменшується при деяких хворобах. До складу глобулінів входять амінокислоти: гліцин (3 – 4%), лейцин, валін, лізин, серин, глутамінова кислота, а також деяка частина вуглеводів.

Гістони відкриті А. Косселем у 1910 р. Мають молекулярну масу від 5 тис. до 37 тис. Гістони легко розчиняються у воді, при додаванні аміаку осаджуються, мають основні властивості, які обумовлені високим вмістом діаміномонокарбонових амінокислот (20 – 35%). До складу гістонів входять аргінін, лізин, гістидин. Багаті гістонами тканини залоз внутрішньої секреції (зобна), сперма риб, лейкоцити, еритроцити. За вмістом лізину і гістидину гістони розділяють на декілька фракцій. Гістони утворюють комплексні сполуки з ДНК – нуклеогістони. Приєднання і відщеплення гістона до молекули ДНК регулює біосинтез РНК і білка. Гістони забезпечують унікальну структуру ДНК, є складовою частиною гемоглобіну і багатьох складних білків.

Протаміни. Ці білки були відкриті Ф. Мішером і А. Косселем у складі нуклеопротеїдів сперми риб. Знайдені також у тканинах багатьох паренхіматозних органів (печінці, селезінці, нирках) і залозах внутрішньої секреції. Молекули протамінів побудовані в основному із залишків діаміномонокарбонових кислот, особливо багаті аргініном (до 70 – 87%). Мають основні властивості, утворюють солі з кислотами. При кип’ятінні не денатурують, легко розчиняються у воді. Амінокислотний склад протамінів, наприклад сальмін сьомги, наступний: 85% залишків аргініну, інше – серин, пролін, валін, гліцин, ізолейцин і аланін. В ядрах клітин протаміни асоціюють з ДНК. Виконують функції третьої спіралі ДНК, обмотуючи останню зовні. Малорозчинний комплекс протамінів з інсуліном використовується в медицині.

Проламіни. Всі проламіни – рослинні білки, цінні продукти харчування: гліадин пшениці і жита, гордеїн ячменю, зеїн кукурудзи, аверин вівса, оризин рису, каферин сорго. Вони погано розчиняються у воді, але добре в 60 – 80%-ному етанолі. Одержують проламіни екстракцією в 70%-ному етанолі з подальшою відгонкою спирту у вакуумі. Ці білки багаті проліном і глутаміновою кислотою. Так, молекула проламіна на 10 – 15% складається з проліна, на 20 – 50% з глутамінової кислоти, інші амінокислоти складають незначний відсоток. Проламіни бідні лізином. Їх молекулярна маса досягає 75 тис. Компонентний склад проламінів (наприклад, гліадина) генетично детермінований і визначає сорт рослини.

Глутеліни. Є важливими кормовими і харчовими білками. Містяться в зелених частинах рослин (до 43% складу білків) і зерні злаків. Розчиняються в розбавлених розчинах лугів і кислот. Молекули глутелінів багаті залишками глутамінової кислоти і лізину. Було виділено багато глутелінів: глутеліни пшениці і кукурудзи, оризенін рису. В зерні пшениці гліадин і глутенін утворюють клейковину, що визначає хлібопекарські якості зерна.

Протеїноїди (склеропротеїни). Протеїноїди, або опорні білки, поширені в організмі тварин. Молекулярна маса до 10 тис. Протеїноїди не розчиняються в холодній воді, розчинах лугів, кислот і солей, майже не розщеплюються протеолітичними ферментами, міцні і еластичні. В організмі виконують опорні функції. Речовини, близькі до протеїноїдів, були отримані в експериментах, які моделюють походження життя на Землі. До них належать:

Колаген – фібрилярний протеїноїд. Молекула колагену складається з трьох поліпептидних ланцюгів, закручених у спіраль. Колаген складає третину білків організму, є основним структурним компонентом сполучної тканини: сухожиль, зв'язок, хрящів, кісток, основи шкіри, луски риб. Молекули колагену мають ниткоподібну форму завдовжки – до 300 і завширшки до 1,5 нм. Для молекули колагену характерна повторюваність групи гліцин–проліл–оксипроліл. При тривалому кип’ятінні з водою колаген утворює желатину. Вона використовується для виготовлення столярного клею, в харчовій промисловості, в бактеріології (середовище), в хірургії (зупинка кровотеч), ін.

Кератин – фібрилярний білок. Кератин складає основу епідермісу, волосся, шерсті, пір’я, рогів, копит, луски. Розчиняється у воді, розчинах кислот, лугів, солей і в органічних розчинниках. При тривалому гідролізі з мінеральними кислотами розщеплюється до 7 – 14 різних амінокислот. Кератин багатий цистином, лейцином і глутаміновою кислотою. Має високу молекулярну масу (до 200 тис.). У складі молекули кератину виявлені скручена a-спіраль і розтягнута b-форма. Основною структурною одиницею a-спіралі є циліндрові мікроволокна, які складаються зі скручених попарно у вигляді спіралі протофібрил.

Еластин – опорний білок еластичних тканин. Складає білкову основу зв'язок, сухожиль, середньої оболонки великих артерій і вен. Еластин не розчиняється у воді навіть при кип’ятінні. В тонкій кишці частково розщеплюється ферментом еластазою. До складу молекули еластина входять гліцин, пролін, валін, лейцин та інші амінокислоти, окрім цистеїну, оксилізину, метіоніну і триптофану.

Фіброїн – білок шовкової нитки. Стійкий до гідролізу. Містить до 44% залишків гліцину, а також аланін і тирозин.

Протеїди розрізняють залежно від природи простетичної групи: нуклеопротеїди, хромопротеїди, фосфопротеїди, ліпопротеїди і глікопротеїди. Іноді до них відносять протеїдні комплекси.

Нуклеопротеїди. Складні білки, що складаються з простих білків і нуклеїнових кислот. Відкриті Ф. Мішером у 1868 р. у клітинах гною. Пізніше знайдені в різних клітинах людини, тварин, рослин, мікробів і вірусів. Білкова частина нуклеопротеїдів найчастіше складається з гістонів або протамінів. Залежно від природи нуклеїнової кислоти розрізняють два види нуклеопротеїдів – дезоксирибонуклеопротеїди (ДНП) і рибонуклеопротеїди (РНП).

Хромопротеїди. Складні білки, молекула яких складається з простого білка і забарвленої простетичної групи. Простий білок найчастіше представлений гістонами, простетичні групи – похідними ізоалоксазина (флавінові ферменти), каротину (родопсин) і порфірину (гемоглобін, міоглобін, геміновими ферментами – каталаза, пероксидаза, цитохромоксидаза, ін.).

Гемоглобін – червоний залізовмісний білок крові. Його молекула складається з білка глобіну і забарвленої речовини гема, яка містить комплексно зв'язане залізо. Хімічна будова встановлена M.В. Ненцьким у 1897 р. Г. Фішер у 1929 р. здійснив синтез похідного гема – гематина. Специфічність гемоглобіну для кожного виду тварин визначається хімічною будовою глобіну, оскільки гем для всіх хребетних однаковий. Кожний гем оточений одним з чотирьох поліпептидних ланцюгів глобіну. Молекула гемоглобіну складається з двох симетричних половинок. Кожна половинка має два ланцюги: a і b. a-Ланцюг містить 141 амінокислотний залишок b-ланцюг – 146. Таким чином, молекула гемоглобіну складається з 574 амінокислотних залишків. Гем зв'язаний з глобіном через гістидиновий залишок поліпептидного ланцюга. В зібраній у тетрамер молекулі всі чотири гема розміщені на поверхні і легко доступні для взаємодії з О2, CO2, СО. Субодиниці зв'язуються між собою сольовими, водневими і іншими зв'язками, які можуть легко розпадатися під впливом різних чинників на димери і частково на мономери.

Гемоглобін – головний структурний і хімічний компонент еритроцитів. Складає близько 94% сухої маси еритроцитів. У кожному еритроциті міститься близько 280 млн. молекул гемоглобіну.

Міоглобін. Молекула цього хромопротеїду утворена одним гемом і однією молекулою глобіну. Міститься в м'язовій тканині, де депонує кисень і передає його відповідним ферментним системам. Проявляє більшу спорідненість до кисню, ніж гемоглобін. У наземних тварин міоглобін зв'язує близько 10% всього кисню тканин (у людини – 14%), у морських тварин (дельфіна, тюленя, кита) – до 40%. У наземних тваринних міоглобін складає 2% сухої маси м'язів, у морських – до 20%. Структура молекули міоглобіну була вивчена Д. Кендрю у 1960 р. Молекула міоглобіну представлена довгим спіралевидним поліпептидним ланцюгом, що складається з 153 амінокислотних залишків, і гемом. Молекулярна маса – 17 тис. Міоглобін з газами утворює такі ж сполуки, як і гемоглобін (оксиміоглобін, карбоксиміоглобін, метміоглобін).

Фосфопротеїди. Молекули фосфопротеїдів при гідролізі розщеплюються до простих білків і ортофосфорної кислоти. Ортофосфорна кислота приєднується до молекули протеїну по місцю розміщення ОН-груп оксиамінокислот (серина і треонина). Це кислі білки за рахунок наявності у складі залишків ортофосфорної кислоти. Ортофосфорна кислота в молекулі фосфопротеїду утворює моно- і диефірні зв'язки, а в окремих випадках – пірофосфатні, які з’єднують поліпептидні ланцюги в білкову молекулу.

Казеїн – білок молока і молочних продуктів. Утворюється з казеїногена, від молекули якого при зсіданні відщеплюється пептид. Розчиняється в сольових розчинах, але не розчиняється у воді. При дії кислот випадає в осад. Молекулярна маса 24 – 400 тис. Складається з трьох фракцій – a, b і g. Молекула казеїну складається із залишків всіх незамінних амінокислот. Казеїн багатий лейцином, валіном, лізином, метіоніном і триптофаном. Найцінніша поживна речовина для новонароджених і дітей, джерело фосфору для утворення кісток, багатьох білків, фосфатидів, макроергів, коензимів. У промисловості використовується для добування пластмас, штучних волокон, багатьох фарб, клею.

Пепсин – основний фермент шлункового соку, найкраще діє в слабокислому середовищі. Розщеплює білки до пептидів. Був відкритий T. Шванном у 1836 р. і отриманий у вигляді кристалів Д. Нортропом у 1930 р. Молекулярна маса близько 34500. Молекула представлена поліпептидним ланцюгом, який складається з 340 амінокислотних залишків, трьох внутрішніх дисульфідних зв'язків і залишку фосфорної кислоти. Синтезується головними клітинами залоз дна шлунку у вигляді неактивного пепсиногену, після відщеплення від нього пептиду перетворюється на активний фермент.

До фосфопротеїдів відносяться білки курячого яйця, зокрема, овоальбумін – основа білка і білки жовтка, вітелін, вітеленін і фосфовітин.

Ліпопротеїди. Це складні білки, молекула яких складається з простого білка і ліпіду. Ліпопротеїди розчиняються у воді і мало (або зовсім) не розчиняються в органічних розчинниках. Ліпопротеїди – основа біологічних мембран і пластинчатих структур – мієлінових оболонок нервових волокон, хлоропластів та ін. Зустрічаються у вільному стані в лімфі, крові, молоці, яєчному жовтку. Синтез ліпопротеїдів забезпечує транспорт і розчинення ліпідів (та інших речовин) в тканинах і клітинах. Вітаміни А, D, E, К і F транспортуються в клітини у вигляді ліпопротеїдних комплексів з b-глобулінами плазми крові.

Детально вивчені a- і b-ліпопротеїди плазми крові. Перші з них складають близько 3% білків плазми крові. Їх молекула на 65% складається з протеїну і на 35% з ліпіду. b-Ліпопротеїди складають близько 5% білків плазми крові. Їх молекула містить близько 25% протеїну і 75% ліпіду. Молекулярна маса перших – близько 200000, других – 1300000.

За швидкістю осідання при центрифугуванні ліпопротеїди ділять на чотири групи:

1) високої густини (містять 52% протеїну і 48% ліпідів, головним чином фосфатидів); 2) низької густини (21% білка і 79% ліпідів, в основному холестерину); 3) дуже низької густини (9% білка і 91% ліпідів, в основному тригліцеридів); 4) хіломікрони (1% білка і 99% жирів).

У молекулах ліпопротеїдів білкова частина з'єднується з ліпідом завдяки різним видам хімічного зв'язку (особливо іонного). Розчиненню ліпопротеїдів у тканинних рідинах і клітині сприяє структура їх молекули, оскільки білкова частина молекули з гідрофільними групами знаходиться зовні, а гідрофобні ділянки розміщуються всередині. Іноді ліпідна частина зосереджена у вигинах поліпептидного ланцюга, що сприяє розчинності білка.

Глікопротеїди. Молекули глікопротеїдів при гідролізі розщеплюються на простий білок і вуглеводну простетичну групу, яка зазвичай складається з гіалуронової і хондроітинсірчаної кислот, гепарина, деяких глікополісахаридів. При гідролізі простетичної групи утворюються гексози (маноза, галактоза, глюкоза), гексозаміни (глюкозамін, галактозамін) і кислоти (глюкуронова, оцтова, сірчана). Молекулярна маса білків різна – від декількох десятків тисяч до мільйонів. Білки містяться у всіх тканинах тварин і рослин, в мікробах і вірусах. Вміст вуглеводної частини в глікопротеїді варіює від декількох часток відсотка до 80%. Зв'язок у молекулі глікопротеїду між білковою частиною і простетичною групою міцний і розривається тільки після тривалого кислотного або ферментативного гідролізу. Він зазвичай формується за рахунок взаємодії вуглеводного компоненту з СООН-групою залишку аспарагінової кислоти. Найбільш поширені в організмах муцини і мукоїди.

Муцини – слизові виділення епітеліальних покривів слизових оболонок харчового каналу, дихальних і сечостатевих шляхів, слинних залоз. Виконують захисну функцію, оберігаючи оболонки від механічних і хімічних пошкоджень. Стійкі до гідролізу.

Мукоїди – глікопротеїди хрящової (хондромукоїди) і кісткової (остеомукоїди) тканин, яєчного білка (овомукоїд), синовії, склоподібного тіла ока, зв'язок і сухожиль і т.д. Значення їх різноманітне і визначається функцією органу і тканини.

До глікопротеїдів відносяться деякі гормони передньої частини гіпофіза – тиреотропін і фолікулостимулюючий, речовини які визначають групу крові, імуноглобуліни, деякі білки крові і тканин (протромбін), ферменти та ін.

Лекція № 5. Нуклеїнові кислоти.

Нуклеїнові кислоти були відкриті швейцарським ученим Ф. Мішером у 1869 p. в ядрах лейкоцитів. У зв'язку з тим що вони вперше були виявлені в ядрах клітин, то спочатку їх називали нуклеїном (nucleus – ядро). Пізніше в нуклеїні була відкрита фосфорна кислота і його стали називати нуклеїновою кислотою. Ще пізніше було встановлено, що нуклеїнова кислота міститься не тільки в ядрах лейкоцитів, а й в ядрах різних клітин. Потім нуклеїнова кислота (дещо відмінна від тієї, що міститься в ядрах) була знайдена і в цитоплазмі клітин. Так було доведено, що нуклеїнові кислоти містяться в усіх клітинах організмів і відіграють важливу біологічну роль, зокрема є основними носіями передачі спадковості та беруть безпосередню участь у синтезі білків в організмі.

Хімічний склад і будова нуклеїнових кислот

Нуклеїнові кислоти, як і білки, є високомолекулярними сполуками. Вони побудовані з великої кількості структурних одиниць, які називаються нуклеотидами, тобто нуклеїнові кислоти – полінуклеотиди.

Нуклеотиди – це трикомпонентні сполуки. Вони складаються з пуринових або піримідинових основ, пентоз і фосфорної кислоти. З пуринових основ до складу нуклеотидів входить в основному аденін (6-амінопурин) або гуанін (2-аміно-6-оксипурин):

З піримідинових основ у складі нуклеотидів виявлені переважно урацил (2,4-дигідроксипіримідин), тимін (2,4-дигідрокси-5-метилпіримідин) і цитозин (2-гідрокси-4-амінопіримідин):

Крім основних азотистих основ у складі нуклеїнових кислот в невеликих кількостях містяться так звані мінорні (рідкісні) основи як пуринового, так і піримідинового ряду. Прикладом їх можуть бути 1-метиладенін, 1-метилгуанін, дигідроурацил, 3-метилурацил, 5-гідроксиметилцитозин, псевдоуридин (нуклеозид) та ін.:

Підвищену кількість мінорних основ (до 20 %) виявлено в транспортних РНК.

Із вуглеводних компонентів – пентоз – до складу нуклеотидів входить в b-D-рибофуранозній формі рибоза або дезоксирибоза:

Встановлено, що в складі окремих фагових ДНК крім рибози і дезоксирибози виявлена також глюкоза.

Як уже зазначалося, компонентом нуклеотидів є фосфорна кислота:

Азотисті основи, сполучаючись з пентозою, утворюють дещо простіші за нуклеотиди сполуки – нуклеозиди. У нуклеозидах пуринові або піримідинові основи зв'язуються з рибозою або дезоксирибозою b-N-глікозидним зв'язком. Існують два види глікозидних зв'язків – a і b. Вони визначаються природою вуглеводного компонента. У складі нуклеїнових кислот є лише b-глікозидні зв'язки, оскільки до їх складу входить рибоза або дезоксирибоза в b-формі. В зв'язку з цим N-глікозидний зв'язок має b-конформацію. В утворенні N-глікозидного зв'язку в пуринових основах бере участь азот N-9, в піримідинових – N-1, а в пентозах – вуглець С-1:

Назва нуклеозидів походить від назви азотистої основи. Так, сполуки аденіну з рибозою називають аденозином, цитозину з рибозою – цитидином. Якщо в їх складі замість рибози була б дезоксирибоза, то нуклеозиди мали б назву відповідно дезоксиаденозин і дезоксицитиднн. Нуклеозиди, приєднуючи до себе фосфорну кислоту, утворюють основну структурну одиницю нуклеїнових кислот – нуклеотиди. Отже, нуклеотиди містять у своєму складі азотисту основу, пентозу і залишок фосфорної кислоти (табл. 1).

Таблиця 1.

Компоненти нуклеїнових кислот і їх позначення

Азотиста основа

Нуклеозид

Рибонуклеотидфосфат

Дезоксирибонуклеотидфосфат

моно-

ди-

три-

моно-

ди-

три-

Аденін (А)

Аденозин

АМФ

АДФ

АТФ

дАМФ

дАДФ

дАТФ

Гуанін (Г), (G)

Гуанозин

ГМФ

ГДФ

ГТФ

дГМФ

дГДФ

дГТФ

Цитозин (Ц), (С)

Цитидин

ЦМФ

ЦДФ

ЦТФ

дЦМФ

дЦДФ

дЦТФ

Тимін (Т)

Тимідин

дТМФ

дТДФ

дТТФ

Урацил (У), (U)

Уридин

УМФ

УДФ

УТФ

Назва нуклеотидів походить від назви основ, що входять до їх складу, або від назви нуклеозиду. Так, якщо нуклеотид містить азотисту основу аденін, то він називається аденіловою кислотою, або аденозинмонофосфорною кислотою (АМФ); якщо азотистою основою є цитозин, то нуклеотид називається цитидиловою кислотою, або цитидинмонофосфорною кислотою (ЦМФ):

Аналогічний принцип назви властивий і для нуклеотидів, які замість рибози містять дезоксирибозу. Відмінність полягає тільки в тому, що до назви нуклеотиду додається префікс дезокси- (д):

Нуклеотиди, до складу яких входить рибоза, називаються рибонуклеотидами, а якщо до складу входить дезоксирибоза – дезоксирибонуклеотидами. Як видно з наведених вище прикладів, фосфорна кислота зв'язана з п'ятим вуглецевим атомом пентози. Необхідно зазначити, що приєднання фосфорної кислоти до залишку пентози може проходити в другому або третьому положенні.

Встановлено, що нуклеотиди входять не тільки до складу нуклеїнових кислот, а можуть перебувати у вільному стані або бути складовими частинами ферментних систем, наприклад аденозинфосфорних кислот – АМФ, АДФ і АТФ:

Аденозинмонофосфорна кислота, приєднуючи до залишку фосфорної кислоти ще один або два таких залишки, утворює аденозиндифосфорну (АДФ) або аденозинтрифосфорну (АТФ) кислоту. Ці аденозинфосфорні кислоти відіграють важливу роль в обмінних процесах організму. Зокрема, АТФ бере участь в енергетичному обміні організму і є однією з основних макроергічних сполук. При відщепленні від АТФ однієї або двох молекул фосфорної кислоти, які зв'язані між собою макроергічним зв'язком (~), виділяється 32,8 – 42 кДж/моль енергії, тоді як енергія звичайного фосфорного зв'язку 8 – 12 кДж/моль.

В обміні речовин та енергії беруть участь й інші фосфорильовані нуклеотиди, зокрема ті, які містять гуанін, цитозин і урацил. Проте у процесах обміну речовин і енергії основна роль належить АТФ.

Аденозинтрифосфорна кислота при каталітичній дії ферменту аденілатциклази може відщеплювати два залишки фосфорної кислоти й утворювати аденозин-3',5'-монофосфорну кислоту, тобто циклічну АМФ:

Циклічна АМФ (цАМФ) відіграє важливу роль у регуляції каталітичної дії ферментів та цілого ряду метаболічних процесів в організмі. Крім цАМФ відомо ще два циклічних нуклеотиди – циклічна гуанозинмонофосфорна (цГМФ) і циклічна цитидинмонофосфорна (цЦМФ) кислоти. цГМФ міститься у багатьох тканинах організму. Вона діє так, як і цАМФ, проте викликає зовсім протилежний ефект. Якщо цАМФ є активатором цілого ряду ферментів, то цГМФ пригнічує їх активність. Біологічна роль цГМФ вивчена мало.

Будова нуклеїнових кислот

Окремі нуклеотиди, які побудовані з пуринових або піримідинових основ, рибози або дезоксирибози і залишку фосфорної кислоти, сполучаючись між собою, утворюють ди-, три-, тетра-, пента- гекса- і полінуклеотиди, тобто нуклеїнові кислоти. До складу нуклеїнових кислот входять сотні і тисячі окремих нуклеотидів. Вони з'єднані між собою за допомогою фосфоефірного зв'язку, який утворюється внаслідок взаємодії гідроксильної групи, що знаходиться біля 3'-го атома вуглецю пентози одного нуклеотиду з залишком фосфорної кислоти, який знаходиться біля 5'-го атома вуглецю пентози наступного нуклеотиду.

На кінцях полінуклеотидного ланцюга знаходяться пентози. Один ланцюг містить вільну групу ОН в положенні 3¢ а другий – фосфорильовану групу ОН в положенні 5¢. Початок ланцюга позначається фосфатом при 5'-вуглеці пентози, а кінець ланцюга – гідроксильною групою при 3'-вуглеці пентози. Скорочено напрямок ланцюга позначається 5'®3¢.

Нуклеїнові кислоти залежно від хімічного складу, структури і біологічної ролі поділяють на дві групи: рибонуклеїнові кислоті (РНК) і дезоксирибонуклеїнові кислоти (ДНК).

Рибонуклеїнові кислоти побудовані з рибонуклеотидів, які крім залишку фосфорної кислоти містять вуглеводний компонент (рибозу) і азотисті основи (аденін, гуанін, урацил і цитозин).

До складу дезоксирибонуклеотидів входять нуклеотиди, у яких вуглеводний компонент не рибоза, а дезоксирибоза та азотисті основи – аденін, гуанін, цитозин і замість урацилу – тимін.

Отже, РНК і ДНК відрізняються між собою за хімічним складом тим, що перша містить рибозу і урацил, а друга – дезоксирибозу і тимін. Нижче подано будову фрагментів полінуклеотидних ланцюгів РНК і ДНК (рис. 1).

Рис. 1. Фрагменти ланцюгів нуклеїнових кислот

Дезоксирибонуклеїнові кислоти (ДНК)

ДНК є основним генетичним матеріалом живих систем. У організмах, за винятком вірусів і бактерій, вона сконцентрована в ядрах клітин. Невелика кількість ДНК міститься в мітохондріях, хлоропластах та в деяких інших включеннях клітин.

Характерною ознакою ДНК є висока її молекулярна маса. Вона коливається в досить широких межах і залежить насамперед від того, з якого організму виділена. Зараз найкраще вивчена молекулярна маса ДНК вірусів і фагів. Вона вимірюється десятками і сотнями мільйонів. Так, молекулярна маса бактеріофагу Фd становить 1,9 млн., аденовірусу – 21 млн., а бактеріофагу Т4 – 111 – 131 млн. Молекулярна маса ДНК еукаріот, очевидно, ще вища. Про це може свідчити молекулярна ДНК плодової мушки дрозофіли, яка становить 40 ´109.

Для ДНК, як і для білків, властиві кілька рівнів структур: первинна, вторинна і третинна.

Первинна структура – це порядок (певна послідовність) розміщення мононуклеотидів у полінуклеотидних ланцюгах ДНК. Вивчення цієї структури становить певні труднощі, оскільки різні види ДНК побудовані з великої кількості мононуклеотидів – сотень і навіть тисяч. Крім того, послідовність розміщення чотирьох різних мононуклеотидів у полінуклеотидних ланцюгах різних видів ДНК неоднакова. Унікальність кожної ДНК визначається саме послідовністю розміщення мононуклеотидів в її молекулі. Виходячи з цього, дослідження первинної структури ДНК якісного складу, кількісного вмісту та порядку чергування мононуклеотидних ланок у полінуклеотидних ланцюгах є досить важливою проблемою, над вирішенням якої працювали вчені різних країн, починаючи з початку XX ст.

Тривалий час первинну структуру ДНК вивчали на основі другорядних даних: локалізації пуринових і піримідинових блоків, фізико-хімічних властивостей, розподілу мінорних основ тощо. Переломним етапом у цих дослідженнях стало впровадження та вдосконалення нових методів, таких як електрофорез у поліакриламідному гелі, рентгеноструктурний аналіз, радіоавтографія та відкриття ферментів рестриктаз. Дані ферменти мають точно визначену субстратну специфічність і можуть здійснювати секвенування полінуклеотидних ланцюгів за місцем локалізації певних мононуклеотидів пуринового та піримідинового ряду з утворенням фрагментів з відомими кінцевими послідовностями мононуклеотидів (залежно від виду рестриктаз). Утворені фрагменти, завдяки наявності в них негативного заряду (за рахунок дисоційованих фосфатних груп), розділяють методом електрофорезу в поліакриламідному гелі. Даний метод виявився досить чутливим і дає змогу розділяти фрагменти ДНК, які відрізняються за довжиною на одну мононуклеотидну ланку.

Чергування мононуклеотидних ланок в утворених коротких фрагментах ДНК визначають за допомогою методів, в яких використовують радіоактивний фосфор (Р32) та секвенацію за участю хімічних реагентів (дифенілсульфату, гідразину тощо), які забезпечують розривання міжнуклеотидних зв'язків за місцем локалізації одного з чотирьох нуклеозидмонофосфатів (А, Т, Г, Ц). Потім зразки розділяють методом гель-електрофорезу. За даними радіоавтограм, електрофореграм визначають первинну структуру коротких фрагментів ДНК. Чергування мононуклеотидів у всій молекулі ДНК визначають по перекриванню послідовностей мононуклеотидів, добутих внаслідок використання рестриктаз, що мають різну субстратну специфічність.

Даний метод вивчення первинної структури ДНК було розроблено в другій половині 70-х років. Він дістав назву методу секвенування Свердлова-Максама-Гілберта. Дещо раніше (1975 р.) В. Гілберт запропонував метод вивчення первинної структури ДНК на основі одержання РНК-вих копій певних її ділянок за участю ферменту РНК-полімерази з наступним розшифруванням їхньої структури. Застосування цих методів дало змогу розшифрувати первинну структуру ДНК різних організмів: вірусу SV-40, бактеріофагів yХ-174, а також окремих ділянок ДНК-еукаріот – гена гормону соматостатину, гена тирозинової тРНК, гена g-глобуліну людини тощо. Нині вчені багатьох країн світу працюють над програмою „геном людини”, метою якого є розшифрування первинної структури всієї ДНК організму – геному (сукупності генів, у яких закодована генетична інформація).

При вивченні первинної структури ДНК певний інтерес становило дослідження щодо співвідношення окремих нуклеотидів у полінуклеотидних ланцюгах. Американським ученим Е. Чаргаффом та його співробітниками було виконано комплекс досліджень і на основі добутих даних виведено ряд важливих правил, які дістали назву правил Чаргаффа:

1. Сума пуринових нуклеотидів дорівнює сумі піримідинових нуклеотидів:

(Пур = Пір, або ).

2. Молярний вміст аденіну (А) дорівнює молярному вмісту тиміну (Т):

(А = Т, або ).

3. Молярний вміст гуаніну (Г) дорівнює молярному вмісту цитозину (Ц):

(Г = Ц, або ).

4. Відношення суми молярних концентрацій Г і Ц до суми молярних концентрацій А і Т у різних видів ДНК відрізняється між собою.

5. В одних видах ДНК, зокрема виділених з організму тварин, вищих рослин і багатьох мікроорганізмів, нуклеотиди, що містять аденін і тимін, переважають над нуклеотидами, що містять гуанін і цитозин (А + Т > Г + Ц). Такі дезоксирибонуклеїнові  кислоти називаються ДНК АТ-типу.

В інших ДНК, виділених із мікроорганізмів і бактерій, нуклеотиди, які містять гуанін і цитозин, переважають над нуклеотидами, які містять аденін і тимін (Г + Ц > А + Т). Такі ДНК утворюють ГЦ-тип дезоксирибонуклеїнових кислот.

У природі переважають ДНК АТ-типу.

Значний внесок у вивчення хімічного складу нуклеїнових кислот зробили також академіки А.М. Білозерський і О.С. Спірін. Одержані ними дані дали змогу виявити видову специфічність ДНК у рослин і тварин.

Вивчення нуклеотидного складу ДНК різних організмів показало, що він коливається у мікроорганізмів, водоростей, грибів і особливо у бактерій. Специфічний склад ДНК у них настільки виражений, що може бути однією з надійних систематичних ознак. Нуклеотидний склад ДНК у тварин і вищих рослин, на відміну від мікроорганізмів, коливається в значно менших межах. Так, якщо у бактерій коефіцієнт специфічності ДНК, тобто відношення , змінюється від 0,45 до 2,8 (у 6 разів), то у вищих рослин і різних видів тварин він становить 0,54 – 0,94 (змінюється лише в 2 рази).

При вивченні первинної структури ДНК прокаріот і еукаріот були встановлені закономірності, які стосуються чергування мононуклеотидів у полінуклеотидннх ланцюгах.

ДНК прокаріот:

1. У молекулах ДНК, виділених з бактеріофагів, майже всі послідовності нуклеозидмонофосфатів унікальні (зустрічаються лише один раз). Вони несуть інформацію про первинну структуру іРНК і виконують роль матриць під час синтезу білків з суворо генетично детермінованою первинною структурою.

2. У молекулах ДНК бактерій унікальні послідовності мононуклеотидів перериваються послідовностями, що повторюються. Так, у геномі Е. соlі зустрічається шість ідентичних ділянок, які кодують рибосомальні РНК (рРНК).

3. Серед коротких послідовностей, що повторюються в хромосомах бактерій, знаходяться IS-елементи (мігруючі елементи ДНК).

Деякі характерні особливості та закономірності нуклеотидного складу було встановлено і для ДНК еукаріот. Так, на структурі ДНК еукаріот виявлено кілька видів послідовностей нуклеозидмонофосфатів.

ДНК еукаріот:

1. Послідовності, які складають 64 % геному і включають ділянки ДНК, що містять структурні гени або цистрони. Вони несуть інформацію про синтез молекул іРНК.

2. Послідовності, що повторюються і кодують переважно тРНК та сполуки, що необхідні організму в значних кількостях. Дані послідовності утворюють так звані тандемні повтори.

3. Послідовності, що часто повторюються (сотні тисяч і мільйони разів). Вони складають так звану сателітну ДНК (від лат. satelles – супутник). Таку назву вона дістала в зв'язку з тим, що її можна відділити методом центрифугування в градієнті концентрацій хлориду цезію.

Сателітна ДНК мишей містить послідовності 5'–АААААГГАА–3" 3¢–ТГТТТАЦГ–5", які повторюються більше 300 разів. Особливістю сателітних ДНК є наявність в їхньому складі чергування комбінацій з трьох, а не чотирьох нуклеозидмонофосфатів.

У людини виявлено чотири сателітні ДНК, які становлять 4% хромосомної ДНК. Сателіти, як правило, знаходяться в центромерному гетерохроматині і беруть участь у спарюванні та розходженні хромосом.

4. Зворотні повтори – паліндроми (від грец. Palindromos – перевертень, той, що вертається). Паліндроми – послідовності мононуклеотидів, що повторюються в зворотньому порядку. При цьому послідовності нуклеозидмонофосфатів в одному з ланцюгів паліндрому співпадають з послідовностями нуклеозидмонофосфатів у другому ланцюгу, якщо зчитувати його в протилежному напрямку:

Паліндроми, як правило, мають різну довжину. Вони не впливають на формування вторинної структури, однак при формуванні вищих рівнів структури довгі паліндроми можуть утворювати хрестоподібні структури (а і б), які відіграють певну роль у розпізнаванні окремих ділянок ДНК відповідними ферментами та білковими факторами, що забезпечують регуляцію діяльності генів:

           

Дослідження первинної структури ДНК є досить важливим тому, що властивості і функції ДНК зумовлені послідовністю чергування мононуклеотидних залишків у полінуклеотидному ланцюгу. Основною біологічною функцією ДНК є збереження генетичної інформації. Оскільки у прокаріот уся ДНК хромосоми використовується для кодування структури іРНК, що виконує роль матриці при синтезі білків з специфічною структурою, генетична інформація на структурі ДНК прокаріот, локалізована на певних ділянках, дістала назву оперону (від лат. ореrоn – працюю, дію).

Оперон – ділянка ДНК, обмежена промотором і термінатором, яка містить цистрони або структурні гени (кодують первинну структуру іРНК, які забезпечують синтез білків-ферментів одного метаболічного циклу) і знаходиться під регуляторним впливом гена-регулятора. У прокаріот відомі оперони, до складу яких входить кілька структурних генів або цистронів, що кодують структуру ферментів одного метаболічного ланцюга (поліцистронні іРНК).

Оперон складається з промотора, гена-оператора, структурних генів, або цистронів, та гена-термінатора. Промотор – місце початку транскрипції, є короткою послідовністю мононуклеотидів ДНК, з якою зв'язується фермент ДНК-залежна–РНК-полімераза. Ген-оператор – це ділянка ДНК, що безпосередньо прилягає до структурних генів і регулює їхню функціональну активність за участю білка репресора, синтез якого кодується геном-регулятором. Ген-регулятор може знаходитись поряд чи на певній відстані від оперона. Завершується оперон геном-термінатором, який сигналізує про закінчення транскрипції (рис. 2).

Рис. 2. Будова оперону (транскриптону) прокаріот: R – ген-регулятор; P – промотор; O – оператор; A, B, C – структурні гени; t – термінатор.

Для ДНК еукаріот характерним є те, що лише 2 % її є носієм генетичної інформації, решта виконує регуляторні та інші функції, тобто, на відміну від прокаріот, немає суворої відповідності первинної структури ДНК і первинної структури закодованих на ній білків тому, що порушено принцип колінеарності (відповідності – первинної структури ДНК, первинної структури білка). В зв'язку з цим поняття оперон для еукаріот має відносне значення, оскільки гени, що детермінують структуру ферментів одного метаболічного циклу, не обов'язково розміщені поряд і можуть бути локалізовані на різних ділянках ДНК і навіть різних хромосомах.

На структурі оперона еукаріот інформативні ділянки – екзони – чергуються з неінформативними – інтронами:

Для структурних генів еукаріот характерними є не поодинокі регуляторні ділянки, а цілі їх серії; відрізняються також ферментні системи, що забезпечують зчитування інформації та модифікацію продуктів транскрипції.

Значних успіхів у з'ясуванні первинної структури ДНК досягнуто в останні десятиріччя. Використання різних методів дослідження дало змогу повністю встановити первинну структуру деяких ДНК, окремих фрагментів ДНК, а також структуру багатьох генів. Так, з'ясовано первинну структуру ДНК мітохондрій людини, яка побудована з 16 659 нуклеотидних пар (нп), вивчено первинну структуру ДНК вірусу SV-40, яка складається з 5224 нп. Досліджено первинну структуру генів: яєчного альбуміну (7564 нп), гормону росту людини (2600 нп), інсуліну людини (1430 нп), цитохрому щурів (960 нп) тощо. Значну роботу по вивченню первинної структури нуклеїнових кислот проводили дослідники на чолі з академіками О.О. Баєвим і Ю.О. Овчинниковим.

Вторинна структура. Просторова конфігурація полінуклеотидних ланцюгів ДНК становить її вторинну структуру. Модель структури молекули ДНК вперше була запропонована вченими із Кембріджського університету (Англія) Дж. Уотсоном і Ф. Кріком у 1953 р. Основою для побудови даної моделі стали відомості про хімічний склад ДНК, одержані Е. Чаргаффом, а також дані рентгеноструктурного аналізу, одержані Л. Уілкінсом, Р. Гослінгом і Р. Франкліном. Принципи побудови моделі відповідають властивостям носія спадкової інформації, тобто дають можливість пояснити, як здійснюється запис інформації, як вона відтворюється і змінюється при мутації.

Відповідно до моделі Дж. Уотсона і Ф. Кріка молекула ДНК це подвійна спіраль, тобто вона складається з двох полінуклеотидних ланцюгів, які закручені правильними витками навколо однієї спільної осі (рис. 3, а). Без розкручування вони не можуть відокремитися одна від одної. Полінуклеотидні ланцюги ДНК розміщені антипаралельно: 5'-кінець одного полінуклеотидного ланцюга знаходиться напроти 3'-кінця другого ланцюга. Вони обернені один до одного азотистими основами, а зовні розміщені залишки дезоксирибози і фосфорної кислоти.

Діаметр спіралі ДНК становить 2 нм, крок її 3,4 нм, кожний виток спіралі містить 10 пар нуклеотидів так, що кожна пара їх займає 0,34 нм по осі спіралі. Стабілізація подвійної спіралі здійснюється за рахунок водневих зв'язків і гідрофобної взаємодії.

Рис. 3. Зображення подвійної спіралі ДНК (а) – за Дж. Уотсоном, Ф. Кріком;

(b) – молекулярна; (с) – атомна.

Утворення водневих зв'язків у молекулі ДНК – процес точно визначений. Так, аденін одного полінуклеотидного ланцюга завжди зв'язується двома водневими зв'язками з тиміном другого полінуклеотидного ланцюга, а гуанін постійно зв'язується трьома водневими зв'язками з цитозином. Ця закономірність називається комплементарністю (доповнюваністю). У подвійній спіралі ДНК аденін ніби доповнює тимін, а гуанін – цитозин і навпаки:

Отже, кожна пара нуклеотидів складається з однієї пуринової основи і однієї піримідинової, які доповнюють одна одну. З такого принципу будови ДНК випливає правило Чаргаффа, що вміст аденіну дорівнює вмісту тиміну, а вміст гуаніну дорівнює вмісту цитозину. Важливе значення в стабілізації спіралі ДНК мають неполярна взаємодія за участю делокалізованнх p-електронів азотистих основ. Квантово-механічні розрахунки електронної структури ДНК свідчать, що між комплементарними парами А – Т і Г – Ц відбувається перекривання p-орбіталей, а це приводить до того, що комплементарні пари азотистих основ утворюють одну p-електронну структуру. Разом з цим перекривання p-електронних систем азотистих основ відбувається і внаслідок їх паралельного розміщення у вигляді стопки всередині подвійної спіралі молекули ДНК. Найбільш значне перекривання p-орбіталей має місце тоді, коли пуринові основи знаходяться під піримідиновнми. При зворотному порядку розміщення основ перекривання p-орбіталей найменше. Така p-електронна взаємодія між паралельно розміщеними основами або парами основ у молекулі ДНК (так звана стекінг-взаємодія) становить єдину p-електронну систему, яка стабілізує подвійну спіраль ДНК більш істотно, ніж водневі зв'язки.

Двоспіральна ДНК залежно від умов (вмісту води, іонної сили та ін. може набувати певну конформацію). Так, на основі вивчення солей ДНК різних лужних металів з різною вологістю виявлено ряд форм двоспіральної ДНК:

Значний інтерес становить вивчення таких форм ДНК, як А, В, С. При зміні вологості і катіона солі ці форми ДНК можуть переходити одна в одну. В-форма відповідно з моделлю Уотсона-Кріка є формою ДНК, яка найчастіше зустрічається в живих організмах і в розчинах (параметри структури вказані вище). В-форма перетворюється на А-форму, коли вологість препаратів ДНК становить менше 70%. А-форма відрізняється від В-форми тим, що пари азотистих основ розміщені не перпендикулярно до осі спіралі, а під кутом 70°. Внаслідок цього крок спіралі зменшується від 3,4 до 2,8 нм. В А-формі ДНК на один виток припадає одинадцять пар основ (у В-формі – 10), що зумовлює скорочення полінуклеотидного ланцюга приблизно на 25%. А-Конформація часто спостерігається в гібридних молекулах ДНК–РНК, оскільки додаткова гідроксильна група біля другого вуглецю залишку рибози заважає утворенню В-конформації ДНК.

С-форма характеризується більш пухкою і розкрученою структурою. На один виток припадає лише 9 нуклеотидів. Допускають, що в С-формі ДНК находиться у складі хроматину.

Аналіз даних різних форм ДНК свідчить про те, що В-форма найбільш адекватна для процесів реплікації, А-форма – для транскрипції, С-форма – для упаковки ДНК у складі надмолекулярних структур хроматину і деяких вірусів. Отже, вторинна структура молекули ДНК, очевидно, в першу чергу зв'язана з інформаційними процесами в живих системах, наприклад, А-форма з передачею інформації від ДНК до РНК. В-форма із збільшенням кількості інформації і С-форма – з її збереженням.

В останні десятиріччя з'явились дані про можливість існування принципово нових форм ДНК: Z- і SBS-форма – це лівозакручені форми ДНК. Діаметр молекули ДНК у Z-формі становить 1,8 нм, число нуклеотидів у витку дорівнює 12. Допускають, що у природній ДНК можуть чергуватись праві (А-, В-, С-форми) і ліві (Z-форма) ділянки.

SBS-Форми ДНК характеризуються відсутністю взаємного закручування полінуклеотидних ланцюгів навколо однієї спільної осі. Полінуклеотидні ланцюги в SBS-формі ДНК розміщуються поряд „бік в бік” (від англ. side by side, звідки назва – SBS-форма), утворюючи зигзагоподібну форму. Відсутність спіралізації ДНК у формі SBS забезпечує легке розходження полінуклеотитних ланцюгів, що має важливе значення для процесу реплікації ДНК.

Виділення ДНК з різних видів організмів та вивчення її структури показало, що дволанцюгові ДНК окремих прокаріотів – вірусів, бактерій і клітинних органел – мітохондрій та хлоропластів – не лінійні, а замкнуті в кільце. Наприклад, ДНК фага, який називають фагом лямбда, має лінійну форму доти, поки знаходиться у фаговій часточці, а коли попадає в бактеріальну клітину, замикається в кільце завдяки наявності в ланцюгах ДНК так званих „липких” кінців. На кожному кінці ДНК один із ланцюгів довший за інший і містить певну кількість неспарених основ. Такі ділянки неспарених основ на обох кінцях молекули комплементарні одна до одної. Тому при їх спарюванні кінці ланцюгів ніби „злипаються” і молекула набуває структури кільця, утворення якого завершує спеціальний фермент. Одноланцюгові кільцеві форми ДНК виявлені у фагах – фх 174, М 13 і S 13 Е. соlі.

Разом з цим треба зазначити, що в деяких мікроорганізмах виявлені одноланцюгові ДНК, які мають як лінійну, так і кільцеву структури. Так, в окремих вірусів (вірус поліомієліту, дрібний вірус мишей) знайдено лінійні одноланцюгові ДНК. Вони, на відміну від дволанцюгових ДНК, мають меншу молекулярну масу, в них часто не зберігається відповідне співвідношення між азотистими основами: А – Т і Г – Ц і т.д.

Третинна структура ДНК. Дослідження будови ДНК показало, що лінійні дволанцюгові або кільцеві форми ДНК можуть бути зорієнтовані у просторі з утворенням спіралізованих і суперспіралізованих форм, тобто третинної структури.

Про певне укладання (упаковку) ДНК у клітинах свідчить той факт, що молекула ДНК з молекулярною масою 106 повинна була б мати довжину 5 мкм, а насправді довжина її становить 0,5 мкм. Крім того, клітини прокаріот і органели клітин еукаріот, в яких локалізована основна маса ДНК, часто мають значно менші розміри, ніж розміри її молекули. Так, розмір подвійної спіралі ДНК бактерії Е. соlі більше 1 мм, а розмір самої клітини не перевищує 5 мкм.

Третинна структура ДНК (прокаріот і еукаріот) має свої особливості, пов'язані з будовою та функціями їх клітин. Для третинної структури ДНК вірусів і бактеріофагів характерним є наявність специфічної суперспіралізації одно- або дволанцюгових її кільцевих форм. Суперспіралізовані структури утворюють в основному ліву спіраль. Зустрічаються також суперспіралізовані кільцеві дволанцюгові ДНК, які закручуються самі на себе. Такі суперспіралі характерні для онкогенних вірусів і нехромосомних ДНК бактерій (плазмід) та мітохондрій.

Для третинної структури ДНК еукаріотичних клітин характерна також суперспіралізація, яка забезпечує економну упаковку ДНК в хроматині. Однак особливістю суперспіралізованої третинної структури ДНК еукаріот є те, що вона реалізується у формі складних комплексів ДНК з гістоновими і негістоновими білками, РНК та іонами металів.

Основну масу хроматину становлять білки – гістони, які за вмістом залишків аргініну і лізину поділяють на п'ять груп: Н1; Н; Н; НЗ; Н4. Взаємодія між гістонами і молекулами ДНК забезпечується за рахунок утворення іонних зв'язків між негативно зарядженими залишками фосфату та позитивно зарядженими групами діаміномонокарбонових кислот (аргініну і лізину). Негістонові білки містять велику кількість кислих амінокислот, тобто є поліаніонами. З даними білками пов'язують специфічну регуляцію активності хроматину.

Розрізняють кілька рівнів упаковки ДНК еукаріот у хроматині. Перший, найбільш вивчений, – нуклеосомний. До складу нуклеосом входять відрізки двоспіральної молекули ДНК довжиною 120 – 250 пар основ, Н1 і по дві молекули інших груп гістонів (октет гістонів). Гістоновий октамер утворює ядро нуклеосоми, або нуклеосомний кор, який являє собою диск діаметром 11 і товщиною 5,7 нм. На поверхню даного диска намотується відрізок двоспіральної молекули ДНК, утворюючи 1,75 витка. Між коровими ділянками нуклеосоми розміщуються перемички, або лінкери, які складаються з ділянок молекул ДНК довжиною 30 – 60 пар основ, зв'язаних з гістоном Н1 і негістоновими білками. Довжина лінкерів залежить від типу клітин. Близько 90 % усієї ДНК входить до складу нуклеосом – решта становить лінкерні ділянки. Вважають, що нуклеосоми – це фрагмент неактивного хроматину, а лінкерні міжкорові ділянки – фрагменти активного хроматину. Під електронним мікроскопом хроматин має вигляд намистин – кулеподібні нуклеосоми чергуються з ниткоподібними лінкерними міжкоровими ділянками (рис. 4). Упаковочний коефіцієнт даного рівня структури дорівнює п'яти, тобто внаслідок утворення нуклеосом довжина ланцюга ДНК зменшується в 5 разів.

Наступний рівень упаковки ДНК в хроматині – спіралізація і укладання нуклеосом у вигляді товстих фібрил – соленоїдів. Крок спіралі соленоїду дорівнює 11 нм, на 1 виток припадає 6 – 10 нуклеосом. У цілому завдяки наявності першого і другого рівнів упаковки ДНК у хроматині забезпечується зменшення довжини молекули в 40 – 50 разів.

Третій рівень упаковки ДНК у хроматині вивчено недостатньо. Вважають, що соленоїди утворюють суперспіралізовані петлі, що призводить до зменшення лінійних розмірів ДНК у 200 разів. Суперспіралізовані петлі – це домени ДНК, які відповідають, очевидно, одиницям транскрипції і реплікації хроматину. Петлеподібна, доменна організація сприяє укладанню хроматину в метафазних хромосомах у спіральні структури більш високого порядку. В результаті послідовного укладання молекул ДНК у хроматині лінійні розміри молекул ДНК зменшуються приблизно в 104 разів.

Рибонуклеїнові кислоти (рнк)

Рибонуклеїнові кислоти, (РНК) як і дезоксирибонуклеїнові кислоти (ДНК), є досить важливими компонентами клітин усіх живих організмів. Молекули РНК, що містяться в клітині, відрізняються будовою, функціями, розмірами, складом та локалізацією. Основна маса РНК міститься в цитоплазмі (90 %), решта – в ядрі та інших органелах клітин.

У цитоплазмі клітин міститься РНК кількох видів: рибосомальна (рРНК), транспортна (тРНК), інформаційна (іРНК) або матрична (мРНК). Частина РНК знаходиться в ядрі – ядерна РНК (яРНК). Вміст ядерної РНК становить 4 – 10% загального вмісту РНК клітини. В ядрі, як правило, синтезуються високомолекулярні попередники – преРНК, інформаційної, транспортної і рибосомальної РНК. Особливу фракцію складає так звана гетерогенна ядерна РНК (гяРНК), вміст якої 2 – 10%. Вона відзначається досить високою молекулярною масою і ДНК-подібним нуклеотидним складом; гяРНК є основним попередником цитоплазматичної РНК.

Рис. 4. Рівні упаковки ДНК

Крім цих видів РНК з інфікованих вірусами клітин виділено вірусні РНК. Ці РНК зберігають і передають наступним поколінням закодовану в них генетичну інформацію. Геномні РНК мають найбільшу молекулярну масу, яка досягає кількох мільйонів. До складу молекул входять десятки тисяч нуклеотидів.

Для РНК, як і для ДНК, характерні кілька рівнів структур.

Первинна структура. Основою хімічної будови РНК є полінуклеотиди різної довжини. Послідовність чергування залишків відповідних мононуклеотидів в ланцюгах становить первинну структуру РНК.

Дослідження первинної структури різних видів РНК свідчить про те, що для них характерна переважно така сама закономірність у співвідношеннях нуклеотидів, як і для ДНК. Слід зазначити, що до складу РНК з азотистих основ замість тиміну входить урацил, проте в РНК сума пуринових основ не завжди відповідає сумі піримідинових. Їх співвідношення в РНК змінюється в широких межах. Для РНК, порівняно з ДНК, менш виражена і видова специфічність.

Нині вивчено первинну структуру більш як п'ятидесяти тРНК. Назва цих тРНК походить від амінокислот, які вони переносять до місця біосинтезу білка. Успішно ведуться дослідження з вивчення первинної структури інших видів РНК. Так, вивчена первинна структура різних видів низькомолекулярних рибосомальних РНК. Повністю з'ясовано первинну структуру РНК бактеріофага MS2 (бактеріофаг MS2 є мікровірусом, що паразитує на кишечній паличці), яка складається із 3569 нуклеотидних залишків. Проводяться роботи з вивчення нуклеотидної послідовності високомолекулярних рибосомальних і вірусних РНК. Зараз уже встановлена первинна структура значних фрагментів РНК фагів R17 і 16S-рРНК.

Вторинна структура. РНК, на відміну від ДНК, побудована з одного полінуклеотидного ланцюга, для якого властива своєрідна спіралізація. Полінуклеотидний ланцюг РНК закручується сам на себе, утворюючи водневі зв'язки між азотистими основами аденін – урацил і гуанін – цитозин.

Особливістю вторинної структури РНК є те, що полінуклеотидний ланцюг спіралізований не повністю. Крім того, на відміну від ДНК, спіралізація окремих ділянок полінуклеотидного ланцюга РНК менш досконала. У РНК немає повної відповідності в чергуванні комплементарних основ, що призводить до утворення виступів в окремих нуклеотидів на поверхні спіралі полінуклеотидного ланцюга.

Кількість і величина спіралізованих ділянок у межах одного ланцюга для різних РНК неоднакові. Низький ступінь спіралізації властивий для мРНК, що, очевидно, пов'язано з їх функцією в процесі біосинтезу білка. Наявність значної кількості спіралізованих ділянок ускладнювало б виконання ними функцій матриці під час синтезу поліпептидного ланцюга на рибосомах. Разом з цим на початку полінуклеотидних ланцюгів окремих мРНК виявлені значні спіралізовані ділянки. Можливо, що складна просторова конформація 5'-кінця мРНК необхідна для розпізнавання її факторами ініціації на етапі трансляції генетичної інформації.

Вищий ступінь спіралізації (понад 50%) властивий для транспортних і рибосомальних РНК.

Крім указаних загальних закономірностей кожен вид РНК характеризується особливостями структури, певними властивостями та функціями.

Інформаційні, або матричні, РНК. Це досить важливий вид РНК клітини. Вміст її становить 2 – 6% загальної кількості РНК. Уперше наявність у клітині іРНК передбачили А.М. Білозерський та О.С. Спірін у 1956 p. на основі досліджень AT і ГЦ типу нуклеїнових кислот. Дослідженнями було встановлено позитивну кореляцію між нуклеотидним складом ДНК і певного виду РНК. На основі цих даних зроблено висновок про те, що в передачі спадкової інформації від ДНК до білка бере участь один з видів РНК, який корелює з нею за нуклеотидним складом. Експериментально іРНК було виявлено в 1961 p. С. Спігелменом і Ф. Кріком. Враховуючи те, що дана РНК бере участь у забезпеченні матричного синтезу білка і передачі генетичної інформації, вона дістала назву матричної або інформаційної (мРНК, або іРНК). Синтезується іРНК на ДНК (процес транскрипції). У прокаріот синтезована іРНК може зразу без будь-яких змін використовуватися у вигляді матриці, а в еукаріот в процесі транскрипції утворюється високомолекулярна проРНК, яка піддається процесінгу, внаслідок чого утворюється зріла молекула іРНК. У клітині іРНК представлена молекулами, що відрізняються за величинами молекулярної маси та нуклеотидним складом, тобто первинною структурою, оскільки кожний білок, що синтезується під час трансляції, використовує для відтворення первинної структури свою матрицю. Генетична інформація закодована на структурі іРНК у цистронах або структурних генах. іРНК, що кодує один білок, називається моноцистронною, якщо кілька білків – поліцистронною. В цьому випадку між цистронами знаходяться спейсери – ділянки, що не кодують синтез білків. Для прокаріот характерна поліцистронна, а для еукаріот моноцистронна іРНК.

Основою хімічної будови іРНК є полінуклеотиди різної довжини. Послідовність чергування нуклеотидів у ланцюгах є первинною структурою іРНК.

Загальна будова іРНК прокаріот і еукаріот однакова, хоча існують певні особливості.

У клітинах еукаріот іРНК знаходиться в комплексі з білками, які стабілізують її структуру. Матричні рибонуклеопротеїдні комплекси, що утворюються при цьому, називаються інформосомами. Особливістю іРНК еукаріот є наявність в її складі структур, які не кодуються відповідними генами ДНК, а добудовуються в процесі посттранскрипційної модифікації первинних транскриптів, які піддаються процесингу.

Так, на 5'-кінці іРНК еукаріот знаходиться ділянка, що дістала назву кеп (від англ. сap – шапочка), в складі якої міститься мінорний нуклеозидтрифосфат-7-метилгуанозин. За кепом знаходиться ділянка з метильованими нуклеозидмонофосфатами. Для різних видів іРНК кількісний вміст та якісний склад їх різні. Вважають, що наявність кепу на 5'-кінці іРНК захищає її від дії ферментів нуклеаз.

Далі розміщується 5'-нетранслююча послідовність (5'-НТП) нуклеотидів, багата АГ-парами. Вважають, що ця ділянка забезпечує сполучення іРНК з рибосомою. Ділянка рРНК, з якою контактує іРНК, багата УЦ-парами, тобто ділянки комплементарні одна одній. На 3'-кінці іРНК прокаріот також міститься нетранслююча послідовність, однак довжина їх значно менша, ніж в іРНК еукаріот, і становить 10 – 30 нуклеотидів. 5'-Кінцевий нуклеотид, як правило, містить азотисту основу пуринового ряду аденозин- чи гуанозинтрифосфат (5' ФФФГ...3'). У складі 5'-НТП усіх іРНК прокаріот виявлена особлива послідовність з 3 – 9 нуклеотидів (послідовність Шайна-Дальгарно), яка комплементарна 3'-кінцю 16S рРНК і полегшує ініціацію трансляції іРНК.

Після нетранслюючої зони на структурі іРНК міститься ініціюючий кодон АУГ, а в деяких іРНК ГУГ. Вони пізнаються як ініціюючі лише тоді, коли знаходяться на місці, з якого починається синтез поліпептиду. Якщо кодони розміщені всередині структурних генів, то вони читаються як метіонін (АУГ) і валін (ГУГ). Далі розміщуються цистрони або структурні гени, в яких у вигляді триплетів закодовані певні амінокислоти. Завершується цистрон термінаторними кодоном УАА, УАГ або УГА. У випадку поліцистронної іРНК термінаторні кодони розміщуються в кінці кожного цистрону.

Після цистронів на 3'-кінці іРНК еукаріот міститься нетранслююча послідовність (3'-НТП), до складу якої входить від 100 до 1000 мононуклеотидів. 3'-НТП прокаріот значно коротша, функції її вивчені недостатньо.

Закінчується 3'-кінець іРНК еукаріот поліаденіловою послідовністю, яка містить 150 –200 залишків поліаденілової кислоти. Вона приєднується до 3'-кінця іРНК в ядрі після закінчення транскрипції за участю ферменту поліаденілатполімерази.

Вважають, що біологічна функція поліаденілової послідовності – стабілізація молекули іРНК та продовження часу її функціонування. За один цикл проходження іРНК крізь рибосому відщеплюється один залишок аденозинмонофосфату від поліаденілової послідовності. Втрата поліаденілової послідовності призводить до руйнування іРНК.

Вторинна структура іРНК представлена у вигляді кількох двоспіральних шпильок, які утворюються в межах одного полінуклеотидного ланцюга внаслідок комплементарного спарювання А–У і Г–Ц пар. Шпильки зв'язані між собою короткими одноланцюговими ділянками. Вважають, що шпильки на структурі іРНК відіграють певну роль у забезпеченні процесів ініціації і термінації. При зв'язуванні з рибосомою вся просторова структура іРНК не порушується, а відбувається лише деспіралізація ділянок у місцях безпосереднього контакту іРНК з рибосомою.

Третинна структура іРНК вивчена недостатньо. Припускають, що молекули іРНК можуть змінювати третинну структуру залежно від умов зовнішнього середовища, температури, іонної сили, розчину, рН тощо.

Транспортні РНК (тРНК). Це один з видів рибонуклеїнових кислот клітини, який відіграє важливу роль у забезпеченні перенесення активних форм амінокислот – аміноациладенілатів до рибосомального апарату, де вони використовуються при білковому синтезі. тРНК становлять 10 – 15% всієї РНК клітини. Вони локалізовані переважно в гіалоплазмі клітини, ядерному соку і в безструктурній частині мітохондрій хлоропластів.

Характерною ознакою тРНК є невелика молекулярна маса – 20 – 35 тис. При вивченні первинної структури тРНК встановлено, що вони побудовані переважно з 70 – 90 нуклеотидних залишків і мають певні спільні ознаки. Так, на 5'-кінці полінуклеотидного ланцюга здебільшого знаходиться залишок гуанозинмонофосфорної (ГМФ), а на 3'-кінці – фрагмент, який складається з двох залишків цитидинмонофосфорної кислоти і одного залишку аденозинмонофосфорної кислоти (ЦМФ, ЦМФ, АМФ). Між ними в полінуклеотидному ланцюгу в точно визначеній послідовності розміщені всі інші пуринові і піримідинові нуклеотидні залишки. Серед них близько 8 – 10% нуклеотидів, які містять мінорні основи: псевдоуридин, різні метильовані похідні аденіну, гуаніну, цитозину тощо.

Найпоширенішими мінорними основами в нуклеотидах тРНК є псевдо- і дигідроуридин. Вважають, що мінорні основи підвищують стійкість тРНК проти гідролізу під час дії на них рибонуклеаз. Крім того, деякі мінорні основи беруть участь у кодуванні амінокислот, розпізнаванні ферментом аміноацил-тРНК-синтетазою тієї тРНК, яка взаємодіє з певною амінокислотою під час її активування.

Уперше первинну структуру тРНК розшифрував Р. Холлі із співробітниками у 1965 p. Це була тРНК, яка здійснює перенесення амінокислоти аланіну, тобто аланінова тРНК (тРНКала). Значний внесок у вивченні первинної структури тРНК зробили академік О.О. Баєв і його співробітники. Вони повністю розшифрували первинну структуру тирозинової РНК (тРНКтир).

Для тРНК характерними є і вищі рівні структури (вторинна, третинна), що забезпечуються спіралізацією в межах одного полінуклеотидного ланцюга, що при цьому закручується „на себе”, утворюючи складну просторову структуру тРНК.

Вторинна структура тРНК однотипна для всіх їх видів і представлена у вигляді листка конюшини (рис. 5), що містить п'ять спіралізованих ділянок, чотири з яких закінчуються петлеподібними структурами.

Рис. 5. Вторинна структура тРНК

Вони не містять спарених нуклеотидів, а п'ята закінчується додатковою петлею, функції якої не з'ясовані. В центрі молекули знаходиться неспіралізована ділянка; 3'- та 5'-кінці молекули, сполучені за рахунок комплементарних пар основ і утворюють акцепторне стебло.

Акцепторне стебло – найдовша спіралізована структура в молекулі тРНК, що містить сім спарених основ. Завершується ця ділянка неспареною послідовністю нуклеотидів ЦЦА, розміщеною на 3'-кінці молекули. До 3'-ОН групи кінцевого залишку аденіну приєднується відповідна амінокислота, яка переноситься від аміноациладенілатів на етапі рекогніції.

Утворені при цьому аміноацил-тРНК використовуються у вигляді адапторів, забезпечуючи переведення послідовності нуклеотидів іРНК на амінокислотну послідовність білкової молекули, тобто забезпечують один з етапів трансляції. На протилежному кінці молекули тРНК міститься антикодонова ділянка, що містить п'ять спарених і сім неспарених нуклеотидів, які утворюють антикодонову петлю. У центральній ділянці антикодонової петлі міститься антикодон – триплет, комплементарний кодону іРНК, що кодує відповідну амінокислоту. Так, кодону на іРНК 5'-ГЦЦ-3' відповідає антикодон 3'-ЦГГ-5'. У процесі трансляції кодон іРНК сполучається з антикодоном тРНК водневими зв'язками (кодон-антикодонова взаємодія). Антикодон тРНК є точною копією кодогену ланцюга ДНК, в якому тимін замінено на урацил.

Серед інших петлеподібних структур тРНК найважливіше значення мають:

а) псевдоуридилова петля. Складається вона з семи мононуклеотидних ланок, серед яких завжди зустрічається послідовність 5'-ТyЦГ-3¢, що містить псевдоуридин, який зв'язується водневим зв'язком з мінорною основою РНК – тиміном. Вважають, що дана петля забезпечує взаємодію тРНК з рибосомою (50S-субодиницею);

б) дигідроуридилова петля (D-петля) містить кілька мононуклеотидів, в складі яких знаходиться мінорна азотиста основа дигідроуридин. Дигідроуридилова петля забезпечує взаємодію тРНК з специфічним ферментом (аміноацилсинтетазою);

в) додаткова петля, функції якої мало вивчені.

Третинна структура тРНК досить компактна (рис. 6). Утворюється вона внаслідок наближення окремих ділянок вторинної структури. L-Подібна структура, що утворюється при цьому, дістала назву ліктьового згину (рис. 7). В утвореній структурі антикодонова петля розміщується на одному кінці молекули, а акцепторна – на іншому. При цьому за рахунок акцепторної ділянки утворюється одна подвійна спіраль, а за рахунок спареної ділянки антикодонової петлі – друга. Спіралізовані ділянки розміщуються одна відносно одної під кутом 92°. D-Петля і ТyЦГ-петля взаємодіють одна з одною, утворюючи кут ліктьового згину.

            

Рис. 6. Третинна структура тРНК                Рис. 7. „Ліктьовий згин”

Структура тРНК стабілізується водневими зв'язками та стекінг-взаємодією. Певну роль у стабілізації вищих рівнів структури відіграють іони Мn2+ і Mg2+. Вважають, що третинна структура спільна для всіх тРНК. Незначні відмінності в будові різних тРНК забезпечує специфічне пізнавання їх ферментом аміноацил-тРНК-синтетазою і сполучення з відповідними амінокислотами.

Рибосомальні РНК (рРНК). Рибосомальні РНК є досить важливою групою рибонуклеїнових кислот клітин про- і еукаріот. Вони є структурною основою рибосом – клітинних органел, на яких відбувається досить важливий етап синтезу білка – трансляція. Крім цитоплазматичних рибосом, рРНК забезпечує структуру та функціональну активність рибосом таких важливих органел клітин, як мітохондрії та хлоропласти, що містять автономний апарат синтезу білка.

У складі рибосом рРНК знаходиться в комплексі з білками (рибонуклеопротеїдні комплекси). Молекули рРНК мають, як правило, Y-подібну форму й утворюють каркас, до якого прикріпляються білки, внаслідок чого утворюється щільна компактна структура, яка формує великі та малі субодиниці рибосом. Залежно від набору білків та рРНК великі і малі субодиниці рибосом мають різні константи седиментації: 30S, 50S, 40S, 60S та ін. 30S- і 505-субодиниці формують 70S-рибосому прокаріот, а 40S і 60S відповідно 80S-рибосому еукаріот. Молекулярна маса рРНК різна, в зв'язку з чим розрізняють низько- та високомолекулярні рРНК. Так, з субодиниць рибосоми бактерії Е. соlі виділено рРНК з константами седиментації 23S і 16S з молекулярною масою 1,1 • 106 та 0,56 • 106, що містять відповідно 3200 та 1600 нуклеотидних пар. Крім того, в складі субодиниць виявлено також низькомолекулярну рРНК (5S РНК) з молекулярною масою 4 • 104, кількість нуклеотидних пар в якій становить 120.

Подібний набір рРНК характерний і для субодиниць рибосом, виділених з клітин печінки: 23S, 18S, 5S та 5,8S-PHK, з молекулярною масою відповідно 1,6 • 106; 0,65 • 106; 4 • 104; 5 • 104. Характерним є те, що 28S-рРНК за величиною молекулярної маси варіює в різних видів тварин залежно від рівня еволюції: від 1,5 млн в морських безхребетних до 2 млн у ссавців. Для нуклеотидного складу рРНК характерними є наявність великої кількості пуринових блоків, що містять гуанілові мононуклеотиди та майже повна відсутність модифікованих азотистих основ мононуклеотидів.

Кожний вид рРНК має характерну, властиву для нього первинну структуру, яка відрізняється кількісним вмістом, якісним складом та порядком розміщення мононуклеотидних ланок у полінуклеотидному ланцюгу.

Вторинна структура рРНК утворюється за рахунок спіралізації молекули в межах одного полінуклеотидного ланцюга, внаслідок чого відбувається формування коротких двоспіральних структур – шпильок. У вигляді шпильок організовано близько 2/3 поверхні молекули рРНК, решта представлена одноланцюговими „аморфними” ділянками, з якими зв'язуються білки рибосом.

Подібну будову мають також рРНК мітохондрій тваринних клітин та хлоропластів рослинних клітин, однак вони мають специфічний нуклеотидний склад та відрізняються деталями просторової структури. Для їх молекул характерним є нижчий ступінь спіралізації. Особливістю рРНК мітохондрій і хлоропластів є також незначний вміст в їхньому складі низькомолекулярних РНК. Так, у мітохондріях відсутні 5S- і 5,8S-РНК, а в хлоропластах відсутня 5,8S-PHK.

Вірусні РНК. Вірусні РНК є складовою частиною РНК-вмісних вірусів і фагів. На відміну від більшості клітин про- та еукаріот геном вірусів, як правило, організований за участю одного виду нуклеїнових кислот. У зв'язку з цим розрізняють. ДНК- та РНК-вмісні віруси. На відміну від канонічних форм біополімерів клітини (дволанцюгова ДНК і одноланцюгова РНК), будова, властивості та просторова орієнтація компонентів вірусного геному можуть бути найрізноманітнішими. Молекули вірусних РНК відрізняються між собою молекулярною масою – від сотень тисяч до десятків мільйонів, якісним складом, кількісним вмістом та чергуванням мононуклеотидних ланок у полінуклеотидному ланцюгу (первинною структурою), способом укладання молекули в просторі та здатністю до передачі генетичної інформації. Високомолекулярні вірусні РНК зі значеннями молекулярної маси наближаються до значень молекулярної маси, характерних для ДНК.

Первинна структура вірусних РНК досить різноманітна і значною мірою визначає як просторове укладання полінуклеотилного ланцюга, так і до певної міри характер патогенної дії.

Просторову структуру вірусних РНК можна представити одноланцюговими лінійними формами, які закручуються самі на себе (віруси поліомієліту і корі), одноланцюговими кільцевими формами (бунья-віруси), дволанцюговими молекулами (рота-віруси гастроентеритів) тощо. Майже 80% вірусів людини і тварин належать до так званих РНК-геномних вірусів, у яких генетична інформація закодована в чергуванні мононуклеотидних ланок на структурі РНК, тобто вірусна РНК виконує роль носія генетичної інформації. Однак не всі молекули вірусних РНК забезпечують передачу закодованої в них генетичної інформації і в процесі трансляції можуть виконувати роль матриці при синтезі білка. Це стосується вірусів з негативним геномом, у яких роль матриці виконує не сама вірусна РНК, а її реплікативна копія (реплікативна форма), що утворюється при дії ферменту транскриптази. Реплікативні форми вірусної РНК існують у вигляді дволанцюгових РНК (РНК-фрагментів). Прикладом може бути велика кількість вірусів, що викликають інфекційні захворювання людини і тварин.

Особливу групу реплікативних форм складають вірусні РНК, що входять до складу геному неопластичних вірусів, які спричиняють розвиток таких захворювань, як лейкемія, рак, саркома. Це так звані ретро-віруси, які передають генетичну інформацію за рахунок утворення РНК ДНК реплікативних форм, ланцюг ДНК яких реплікується з утворенням дволанцюгової ДНК, що несе інформацію, одержану від вірусних РНК, і далі інтегрується в геном інфікованих клітин, що разом з іншими факторами може викликати розвиток неопластичних процесів.

Для вірусних РНК характерними є вищі рівні структури, які забезпечують компактне укладання їхніх молекул. Про існування вищих рівнів структури вірусних РНК свідчить той факт, що якби молекули високомолекулярних вірусних РНК існували в лінійній формі, то довжина б їх була значно більшою, ніж довжина клітин, в яких вони виявляють патогенну дію. Встановлено, що залежно від умов середовища (значення рН, іонної сили, температури) вірусні РНК можуть знаходитись у вигляді компактної палички, пухкого клубка чи розгорнутої нитки.

Властивості нуклеїнових кислот

Нуклеїнові кислоти – це речовини білого кольору, волокнистої будови, погано розчинні у воді. їх солі (лужних металів) добре розчинні у воді. Нуклеїнові кислоти розчиняються також у розчинах солей: РНК – у розбавлених, а ДНК – у більш концентрованих.

Оскільки молекули нуклеїнових кислот асиметричні, то їх розчини мають високу в'язкість. В'язкість розчинів нуклеїнових кислот використовується для характеристики дволанцюгових ДНК, зокрема їх молекулярної маси. Так, відносна в'язкість 0,01%-го розчину ДНК з молекулярною масою (5 – 10) • 106 близька до 1,5. Таку ж приблизно в'язкість мають розчини ДНК, в яких концентрація нуклеїнової кислоти в п'ять разів більша, а молекулярна маса значно менша – 0,3 • 106. Руйнування водневих зв'язків у ДНК і розкладання її на два полінуклеотидні ланцюги приводить до зниження в'язкості розчинів.

Для нуклеїнових кислот характерна також висока оптична активність. Їх розчини здатні обертати площину поляризації світла вправо на певний кут (позначається знаком плюс). Він помітно зменшується по мірі зменшення ступеня впорядкованості полінуклеотидних ланцюгів. Так, питома активність розчинів біспіральної ДНК дорівнює 150°. Для розчинів мономерних нуклеотидів, одноланцюгових РНК і ДНК при тій же довжині хвилі питома активність у 4 – 6 разів менша. Отже, даний показник є важливим критерієм наявності в нуклеїнових кислотах спіральних і дволанцюгових ділянок.

Усі нуклеїнові кислоти мають здатність поглинати світло в ультрафіолетовій області з максимумом 260 нм. Порушення нативності нуклеїнових кислот супроводжується підвищеним поглинанням світла, тобто має місце так званий гіпохромний ефект. Він залежить від, вмісту в складі нуклеїнових кислот азотистих пар – А–Т. Гіпохромний ефект найбільш характерний для дволанцюгових нуклеїнових кислот, зокрема ДНК. Наявність гіпохромності є однією з важливих ознак утворення дволанцюгових, спіралізованих ділянок у нуклеїнових кислотах. Одноланцюгові нуклеїнові кислоти, в яких спіралізація нуклеотидних ланцюгів незначна, мають гіпохромний ефект дуже малої величини. В зв'язку з цим гіпохромний ефект використовується при вивченні процесів денатурації і ренатурації нуклеїнових кислот, утворенні гібридних спіралей ДНК – РНК тощо.

Денатурація і ренатурація нуклеїнових кислот. Нуклеїнові кислоти мають здатність до денатурації. Даний процес полягає в розриві водневих і вандерваальсових зв'язків, в деспіралізації та розходженні полінуклеотидних ланцюгів ДНК і двоспіральних ділянок молекул РНК. Денатурацію нуклеїнових кислот можуть викликати кислоти, луги, спирти тощо. Внаслідок денатурації кожний із полінуклеотидних ланцюгів молекули нуклеїнової кислоти набуває форми клубка, скрученого безладно. Тому даний процес ще називають переходом спіраль – клубок.

Денатурація нуклеїнових кислот супроводжується зміною цілого ряду їх фізичних властивостей. Так, підвищується поглинання світла в області 260 нм, зменшуються в'язкість розчинів і кут обертання площини поляризації.

Під час денатурації нуклеїнових кислот наступає такий момент, коли кількість спіралізованих ділянок дорівнює кількості неспіралізованих.

Температуру, при якій настає така рівновага, називають температурою плавлення. Температура плавлення нуклеїнових кислот підвищується із збільшенням довжини молекули полінуклеотиду, а також із підвищенням вмісту (%) в ньому пар азотистих основ Г–Ц. Вважають, що пари азотистих основ у молекулах ДНК утворюють термостабільні ланки або ядра, і підвищують їх стійкість проти денатурації, і, навпаки, молекули ДНК, які містять більшу кількість пар азотистих основ (А–Т), легше піддаються денатурації.

Для вивчення біологічної ролі і функції ДНК в організмі важливе значення має вияснення причин і умов, за яких може відбуватися відновлення нативної двоспіральної структури ДНК. У результаті, досліджень було встановлено, що при підвищенні температури приблизно на 5°С вище температури плавлення ланцюги денатурованої ДНК розходяться. Якщо розчин таких ДНК різко охолодити, то полінуклеотидні ланцюги так і залишаються розділеними, а якщо охолодження такого розчину проводити поступово, то внаслідок рекомбінації відбувається ренатурація (відновлення) подвійної спіралі ДНК (рис. 8).

Процес ренатурації молекул ДНК залежить від їх розмірів, кількості азотистих пар Г–Ц та інших факторів. Так, ДНК вірусів і бактерій, яка за своєю будовою більш проста, ніж ДНК вищих організмів, піддається ренатурації значно легше. Позитивно впливає на процес ренатурації також підвищення кількості пар Г–Ц. При ренатурації ДНК відновлюються її біологічні та фізико-хімічні властивості.

Гібридизація ДНК. Встановлено, що полінуклеотидні ланцюги денатурованих ДНК можуть взаємодіяти на основі принципу комплементарності з одноланцюговими РНК або ДНК, які належать іншим організмам. Такий вид ренатурації називається молекулярною гібридизацією. Вважають, що для утворення гібридної молекули ДНК достатньо, щоб у полінуклеотидних ланцюгах містилось близько 12 комплементарних пар азотистих основ. Чим більше буде комплементарних пар, тим вищим буде вміст (%) біспіральних ділянок у гібридній молекулі ДНК.

Відкриття процесу гібридизації ДНК має важливе значення для вивчення первинної структури різних видів нуклеїнових кислот, а також для наукових досліджень у галузі генної інженерії.

Хімічні реакції нуклеїнових кислот. Мутагени. У зв'язку з наявністю в азотистих основах і пентозах нуклеїнових кислот різних функціональних груп вони можуть вступати в різні хімічні реакції. Це призводить до видозміни основ, що впливає на структуру і функції нуклеїнових кислот. Так, наприклад, аміногрупи азотистих основ можуть взаємодіяти з азотистою кислотою. При цьому замість групи –NН2 утворюється група –ОН: –N=C–ОН. Далі енольна форма переходить в кетоформу: –NH–СО–. Отже, азотиста кислота при взаємодії з нуклеїновими кислотами перетворює цитозин на урацил, а аденін і гуанін відповідно на гіпоксантин і ксантин, тому вона є ефективним хімічним мутагеном.

Рис. 8. Денатурація і ренатурація ДНК

Аналогічну мутагенну дію має гідроксиламін, який вступає в реакцію з карбонільними групами азотистих основ, зокрема з піримідиновими, що приводить до перетворення одного виду основ в інші. Крім того, високу мутагенну дію мають алкілуючі агенти, наприклад нітрозамін.

Ці сполуки мають високу канцерогенну дію. Нітрозаміни можуть утворюватися при взаємодії будь-якого вторинного аміну з азотистою кислотою.

Така реакція може відбуватися і в шлунку людини, де нітрозаміни легко всмоктуються і можуть викликати злоякісні пухлини в різних органах і тканинах організму.

Значний інтерес становить взаємодія нуклеїнових кислот з окремими поліциклічними ароматичними (основними) барвниками, зокрема з акридиновим оранжевим, профлавіном і т.д. Вибірково зв'язуючись з ДНК або РНК, вони дають можливість легко їх виявляти. В останній час ці барвники набули важливого значення як мутагени, які мають селективну дію. Вони здатні викликати вставки, або делеції (включення або випадання окремих одиночних нуклеотидів), при реплікації ДНК, отже пригнічувати її.

Нуклеїнові кислоти під дією кислот піддаються гідролізу. Глікозидні зв'язки в ДНК більш лабільні, ніж у РНК. Нуклеотиди, які містять пуринові основи, піддаються гідролізу легше, ніж нуклеотиди з піримідиновими основами. Отже, ковалентна структура молекул нуклеїнових кислот досить стійка, що дає можливість їм виконувати функцію генетичного матеріалу.

Репарація пошкоджень ДНК. Пошкодження ДНК, які зумовлені дією різних хімічних і фізичних факторів, можуть бути репаровані (виправлені) за участю спеціальних механізмів („ремонтних систем”). Наприклад, при дії ультрафіолетового випромінювання на ДНК утворюються тимінові димери внаслідок взаємодії між собою в одному ланцюзі ДНК сусідніх тимінових залишків з утворенням циклобутанового кільця:

Утворення тимінових димерів порушує структуру ДНК і тим самим блокує її реплікацію. Цим, очевидно і пояснюється летальна та мутагенна дії ультрафіолетового випромінювання на живі організми.

Для виправлення пошкоджень ДНК у живих системах існує декілька механізмів, зокрема фотореактивація, ексцизійна і постреплікативна репарації. Фотореактивація відбувається внаслідок дії світла. При цьому відбувається активація фотореактивного ферменту (ДНК-фотолази), який розщеплює димери на мономери і відновлює водневі зв'язки між тиміном і аденіном комплементарних полінуклеотидних ланцюгів ДНК. Ексцизійна і постреплікативна репарації не залежать від наявності світла і тому їх ще називають темповою репарацією. Ці два види репарації дещо між собою подібні.

При ексцизійній репарації (від лат. excisio – вирізання) видаляються пошкоджені ділянки ДНК за участю цілого комплексу ферментних систем (рис. 9).

Рис. 9. Схема ферментативної репарації ДНК

Так, спочатку діє фермент ендонуклеаза, яка ніби розрізає полінуклеотидний ланцюг ДНК, на якому є пошкодження нуклеотидів. Потім починає діяти фермент екзонуклеаза, яка видаляє пошкоджену частину нуклеотидного ланцюга. На цьому місці за участю ферменту ДНК-полімерази в напрямі 5'®3' заново синтезується частина комплементарного полінуклеотндного ланцюга з непошкодженими нуклеотидами. Далі вільні кінці старої частини полінуклеотидного ланцюга, за участю ферменту лігази, з'єднуються з кінцями заново синтезованої частини полінуклеотидного ланцюга.

Отже, клітини організмів містять цілі набори ферментів, які переміщаються по подвійних спіралях ДНК, відновлюють їх пошкодження і цим самим сприяють зменшенню появи частоти мутацій.

Функції нуклеїнових кислот

Нуклеїнові кислоти в організмі виконують різноманітні функції, але найважливішими серед них є участь у передачі спадкових ознак і процесах біосинтезу білка. Основними носіями генетичної інформації в більшості організмів є ДНК. Винятком є тільки окремі фаги, дрібні віруси тварин і більшість рослинних вірусів, в яких носіями генетичної інформації є молекули РНК.

Основна кількість ДНК зосереджена в ядрах. Ядра тваринних клітин містять близько 2 мг ДНК на 1 г сирої маси тканини. Вміст ДНК у клітинах залежить в основному від числа набору в них хромосом. Бактеріальні клітини містять в сотні разів менше ДНК, ніж тваринні.

Передача генетичної інформації від покоління до покоління здійснюється при самовідтворенні копій батьківських ДНК. Цей процес називається реплікацією (рис. 10). Так під час поділу клітин обидва полінуклеотидні ланцюги ДНК, які обвиті по спіралі навколо однієї спільної осі, розкручуються і розходяться. Після того як кожний із ланцюгів розкрутиться, він добудовує собі подібний полінуклеотидний ланцюг (за принципом комплементарності). Механізм реплікації ДНК описано вище.

Рис. 10. Схема реплікації ДНК

У результаті реплікації з однієї молекули утворюється дві нові цілком однакові молекули ДНК, одна з яких залишається в материнській клітині, а друга – переходить у дочірню. Якщо до цього додати, що в ДНК сконцентрована спадкова інформація (у вигляді триплетного коду), то стає зрозумілою та функція, яку відіграє ДНК у передачі спадкових ознак від покоління до покоління.

Реплікація так само, як і будь-який інший процес побудови і розкладання в організмі, відбувається за допомогою цілого ряду ферментів і тісно пов'язана з обміном речовин. Генетична роль ДНК встановлена після проведення дослідів на бактеріях різних типів з різними властивостями. Наприклад, з одного типу бактерій виділяли чисту ДНК і діяли нею на інший тип бактерій, при цьому останні набували властивостей, характерних для тих бактерій, з яких було виділено ДНК.

Отже, ДНК є субстратом, за допомогою якого здійснюється передача спадкових ознак. Спадкова інформація організму закладена і зберігається в самій молекулярній структурі ДНК, а реалізується (виявляється) у процесі біосинтезу білка. При біосинтезі білка певну роль відіграють не тільки ДНК. а й різні види РНК. Встановлено, що РНК міститься в усіх клітинах організму. Однак їх кількість залежить від типу клітин, виду тканини, віку і фізіологічного стану організму. У клітинах, які інтенсивно розмножуються і ростуть, вміст РНК високий. Після старіння організму і зниження темпів росту, концентрація РНК у клітинах зменшується. Оскільки процеси росту і розмноження передусім пов'язані із збільшенням маси білка цитоплазми, то це свідчить про тісний взаємозв'язок між РНК і біосинтезом білка в клітинах. У результаті досліджень було доведено, що клітини, в яких відбувається інтенсивний синтез білка, характеризуються високим вмістом РНК. Наприклад, велику кількість РНК знайдено в залозах, які продукують білки – гормони або ферменти (підшлункова, залози травного каналу).

Необхідно зауважити, що основна кількість клітинної РНК (до 80%) зосереджена в рибосомах, тобто в тих компонентах клітин, в яких відбувається біосинтез білка. У рибосомах міститься переважно рибосомальна РНК. Інші види зосереджені частково в ядрі, а частково в цитоплазмі.

Встановлено, що всі три види рибонуклеїнових кислот беруть участь у біосинтезі білка. При цьому кожний з них виконує свою функцію. Так, іРНК одержує інформацію про специфічність біосинтезу білка в ядрі від ДНК і переносить її до рибосом, тРНК переносить активовані амінокислоти до місця біосинтезу білка. Роль рибосомальних РНК в синтезі ще повністю не з'ясована. Вважають, що вони створюють клітинну структуру – рибосоми, на яких відбувається синтез білка. Не виключено, що рибосомальні РНК виконують і ряд інших функцій у процесі синтезу білка. ДНК, на відміну від РНК, бере участь у цьому процесі не безпосередньо, а через іРНК. Вона відіграє основну роль у визначенні специфічності біосинтезу білка.

Лекція № 6. Вітаміни.

Загальні відомості

Вітаміни були відкриті в 1880 р. російським лікарем М.І. Луніним (1853  1937) в експериментах на двох групах білих мишей. Тваринам першої групи він давав штучний раціон (вода + казеїн + лактоза + жир + солі), другої – молоко. Через 20 – 30 діб тварини першої групи гинули. Дослідник прийшов до висновку, що для організму людини і тварин, окрім основних продуктів харчування, необхідні ще якісь речовини. Досліди М.І. Луніна незабаром підтвердив К.А. Соски. Голландський лікар X. Ейкман, який працював в тюремному госпіталі на острові Ява, в 1896 р. встановив, що захворювання людей „бері-бері” можна усунути додаванням в їжу хворих неочищеного рису. Ф. Гопкінс в 1906 р. назвав речовини, що оберігають людину і тварин від аналогічних захворювань, „додатковими чинниками живлення”. Польський вчений К. Функ (1884 –1967) отримав з рисових висівок кристалічну речовину, що містить азот, і назвав її вітаміном – аміном, необхідним для життя. Він запропонував розглядати ряд хвороб („бері-бері”, пелагру, рахіт, цингу та ін.) як наслідок відсутності або недостатньої кількості в їжі відповідних вітамінів і назвав такі патологічні порушення – авітамінозами.

Роботи, виконані в нашій країні і за рубежем по вивченню вітамінів, послужили основою для створення вчення про вітаміни – вітамінології. Великий внесок в її розвиток внесли радянські біохіміки А.В. Палладін, В.П. Букін, P.В. Чаговець та ін.

Отже, вітаміни це – група низькомолекулярних органічних речовин, необхідних для існування живого організму в нікчемно малих кількостях у порівнянні з основними продуктами харчування. Вітамінами в даний час називається група речовин різноманітної хімічної природи, що характеризуються нижченаведеними загальними властивостями:

1. Біосинтез вітамінів здійснюється в основному поза організмом людини і тварин. Тому вони одержують вітаміни головним чином з їжею.

2. Вони не є джерелами енергії або пластичного матеріалу.

3. Вітаміни біологічно активні в дуже малих кількостях і украй необхідні для всіх життєвих процесів.

4. При попаданні до кровоносного русла вітаміни впливають на біохімічні процеси, що протікають в різних тканинах і органах.

5. Недостатнє надходження в організм окремих вітамінів або порушення їх засвоєння веде до розвитку патологічних процесів у вигляді специфічних гіпо- і авітамінозів.

Першоджерелом вітамінів є головним чином рослини. Людина і тварини одержують вітаміни з рослинною їжею або побічно – через продукти тваринного походження: молоко, м’ясо, яйця. Частково потреба тварин у вітамінах, особливо у дорослих жуйних, задовольняється в результаті синтезу мікроорганізмами в харчовому каналі деяких вітамінів з більш простих сполук.

Тварини-колрофаги (наприклад, кролики) можуть одержувати деякі вітаміни, поїдаючи власний кал, в якому містяться вітаміни, що синтезуються мікробами товстої кишки.

Відсутність вітамінів у раціоні або порушення процесів їх засвоєння призводить до авітамінозів, недостатнє надходження в організм вітамінів – до гіповітамінозу, надлишок вітамінів у раціоні – до гіпервітамінозів. Це негативно позначається на багатьох реакціях обміну речовин, призводить до уповільнення процесів росту і розвитку людини і тварин. Зниженню рівня продуктивності і зменшенню опірності організму до різних інфекційних та неінфекційних захворювань.

Вітаміни є регуляторами обміну речовин. З багатьох вітамінів в організмі утворюються ферменти – активні речовини, за допомогою яких здійснюються хімічні реакції обміну речовин.

Явища гіпо- і авітамінозів можуть бути викликані присутністю в раціоні антивітамінів – структурних аналогів вітамінів: вони витісняють вітаміни з відповідних реакцій обміну речовин, але не здатні виконувати їх функції. Крім того, роль антивітамінів можуть виконувати сполуки, які інактивують вітаміни, розщеплюючи їх на прості речовини, або утворюють з вітамінами хімічно неактивні комплекси.

Фізіологічні норми добової потреби окремих вітамінів. Кількість окремих вітамінів, яка необхідна для забезпечення фізіологічних функцій організму, коливається в значних межах. Потреба людини в тій або іншій кількості вітамінів залежить як від стану організму, так і від умов зовнішнього середовища. Фізична напруга і розумова робота супроводжуються підвищеною витратою ряду вітамінів. Змінюють потребу людини у вітамінах також характер живлення і кліматичні умови. 

За сучасними даними доросла людина за звичайних умов протягом доби потребує такі кількості вітамінів (табл. 1):

Таблиця 1.

Класифікація і номенклатура вітамінів (за Ф.Ф. Боєчко, 1995)

Буквені позначе-ння

Назва

Фізіологічна дія

Добова потреба, мг

Ознаки авітамінозу

раціональна

тривіальна

Жиророзчинні вітаміни

А1

А2

Ретинол

Дегідроретинол

Антиксерофталміч-ний фактор

Стимулює процеси росту, запобігає розвитку ксерофталмії

0,7 – 1,5

Сухість шкіри та слизових оболонок, пригнічення процесів росту та імунних реакцій

D2

D3

Холекальциферол

Ергокальциферол

Антирахітичний фактор

Регулює фосфорно-кальцієвий обмін

0,0012

Підвищена дратівливість, остеомаляція, гіпотонія м’язів

Е

Токофероли

(a-,b-,g-,)

Антистерильний фактор

Забезпечує нормальний перебіг вагітності

11 – 24

Схильність до раннього переривання вагітності

К1, К2

Філохінони

Антигеморагічний фактор

Забезпечує процес зсідання крові

10 – 15

Геморагічний діатез

F

Полієнові вищі жирні кислоти

Фактор росту

Стимулює ріст та розвиток організму

8000 – 10000

Сповільнення росту, некрози, гематурії

Водорозчинні вітаміни

С

Аскорбінова кислота

Антискорбутний фактор

Посилює еритропоез, фагоцитарну активність лейкоцитів, стимулює обмін речовин

50 – 70

Ламкість та підвищення проникності капілярів, точкові крововиливи, ураження ясен, цинга

Р

Рутин, цитрин

Капілярозміц-нюючий

Виявляє протизапальну та протиалергічну дію

50 – 60

Геморагії, патехії, гіперкератоз, пігментації, ерітема кистей рук

В1

Тіамін

Антиневритний фактор

Стимулює процеси обміну вуглеводів

2 – 3

Психічна та фізична втома, біль у м’язах, парестезії

В2

Рибофлавін

Фактор росту

Стимулює енергетичні процеси

2,5 – 3,5

Ангулярний стоматит, глосит, себорейна екзема

В3

Пантотенова кислота

Фактор росту

Забезпечує синтез біологічно активних сполук

7 – 10

Дерматити, депігментація волосся, затримка росту

В5

(РР)

Нікотинова кислота

Антипелагричний фактор

Стимулює обмін речовин, енергетичні процеси

5 – 15

Хвороба трьох Д

(дерматит, діарея, деменція)

В6

Піридоксин

Антидерматичний фактор

Стимулює білковий обмін та кровотворні процеси

2 – 4

Епілептоформні судоми, хейлоз, глосит,

симетричний дерматит

В12

Ціанкобаламін

Антианемічний фактор

Посилює кровотворні процеси

0,0015

Перніціозна анемія, ахлоргідрія, діарея

ВС 

(B10, B11)

Фолієва кислота

Антианемічний фактор

Стимулює еритропоез, забезпечує синтез холіну

0,2 – 0,3

Макроцитарна мегабластична анемія

Н

Біотин

Антисеборейний фактор

Стимулює білковий та ліпідний обмін

0,1 – 0,2

Себорейний дерматит, м’язова слабкість, атрофія сосочків язика

Вітаміноподібні сполуки

Холін

Ліпотропний фактор

Стимулює обмін речовин

10 – 75

Дерматити

Ліпоєва кислота

Фактор окислення пірувату

Стимулює вуглеводний та ліпідний обмін

60 – 70

М'язова слабкість, дерматити

В13

Оротова кислота

Фактор росту мікроорганізмів

Стимулює еритропоез, анаболічні процеси

1000 – 2000

Сповільнення росту, дерматити, м’язова слабкість

В15

Пангамова кислота

Ліпотропний фактор

Стимулює ліпідний обмін

2 – 3

Порушення ліпідного

обміну

Інозит

Антиалопеційний фактор

Виявляє ліпотропну дію, стимулює обмін

речовин

200 – 500

Нормоцитарна анемія, сповільнення росту, алопеція

ВХ

n-Амінобензойна кислота

Фактор хромотріхії

Нормалізує основний обмін, стан нервової системи

100 – 500

Депігментація волосяного покриву, пір’я, депресія, гіпотонія

U

Метилметіонін сульфоній-хлорид

Антивиразковий фактор

Стимулює процеси регенерації епітеліальних клітин

250 – 300

Розвивається виразкова хвороба шлунку

Особлива увага звертається на необхідність систематичного введення вітамінів. Це обумовлено тим, що вітаміни, як правило, не можуть відкладатися організмом в запас. Прийом надмірної кількості вітамінів викликає посилене їх виділення з організму, найчастіше з сечею. Вважається, що спеціального депо вітамінів в організмі немає. Різний же вміст вітамінів в окремих органах пояснюють функціональними особливостями самих органів. Слід все ж таки відзначити, що вітамін B12 і вітамін А можуть нагромаджуватися в печінці в значних кількостях. Але в цьому випадку високий вміст вітаміну А в печінці може зберігатися лише при постійному надходженні вітаміну з їжею.

Оскільки більшість вітамінів в організмі людини не синтезується або синтезується лише в невеликих кількостях, то потреба його у вітамінах повинна задовольнятися головним чином за рахунок їжі, що поступає, або якщо їх в їжі міститься недостатньо, то за рахунок вітамінних препаратів.

Взаємодія окремих вітамінів. При визначенні необхідної кількості вітамінів слід враховувати наявність в організмі впливу одного вітаміну на потребу в іншому. Це питання вивчено ще недостатньо, але деякі відомості про взаємодію окремих вітамінів вже є.

Так, наприклад, встановлена залежність між обміном вітаміну В2 і аскорбінової кислоти. При цьому відзначено, що кількісний вміст вітаміну С в добовому раціоні чинить виражений вплив на потребу організму в рибофлавіні. Встановлено, що чим вище вміст вітаміну С в раціоні, тим більше виводиться рибофлавіну, тобто тим менша в ньому потреба організму. У свою чергу, при недостатній кількості в їжі рибофлавіну різко порушується обмін аскорбінової кислоти. В той же час у присутності рибофлавіну аскорбінова кислота швидко руйнується при освітленні її сонячним промінням. Вітамін В2 при цьому діє як каталізатор при окисленні аскорбінової кислоти. Доведено, що при вираженому арибофлавінозі знижується в організмі також і рівень вітамінів С і В1. При введенні в подібних випадках рибофлавіну одночасно наростає затримка в організмі не тільки вітамінів С і В1, але також піридоксину і пантотенової кислоти.

Особливо виразні взаємозв’язки встановлені між вітаміном Р і С. Встановлено, що при лікуванні цинги вітаміном С додавання вітаміну Р дозволяє навіть зменшити дозу аскорбінової кислоти, при значному загальному збільшенні клінічного ефекту.

Була відзначена наявність виразного синергізму дії фолієвої кислоти відносно вітаміну B12. Виявилося, що застосування фолієвої кислоти при лікуванні анемії Аддісон-Бірмера вітаміном B12 дозволяє значно зменшити дози обох цих вітамінів, без зниження клінічного ефекту. За наявності ж вираженого дефіциту фолієвої кислоти організм взагалі втрачає здатність утримувати вітамін В12. Також встановлено, що нікотинова кислота краще діє в поєднанні з рибофлавіном.

Є дані, що вітамін С гальмує накопичення вітаміну А в печінці. В той же час використання вітаміну А для синтезу зорового пурпуру є більш ефективним (швидше наступає темнова адаптація) якщо одночасно вводяться рибофлавін і аскорбінова кислота.

Був відзначений також взаємозв’язок тіаміну і рибофлавіну. При недостатньому надходженні в організм вітаміну В1, порушується відкладення рибофлавіну в печінці. І, навпаки, дефіцит вітаміну В2 в харчовому раціоні викликає невелике зниження вмісту в тканинах і тіаміну. Введення в організм великих доз вітаміну В1 або В2 викликає підвищене виділення з сечею не тільки введеного вітаміну, але і комплексу (відповідно вітаміну В2 або В1). Після введення в організм піридоксина спостерігається виведення з сечею не тільки піридоксина, але також тіаміну і рибофлавіну.

Особливо демонстративне в цьому питанні значення вітамінів В1, В2 і РР для процесу окислення молочної кислоти в піровиноградну, а останньої – у вуглекислоту і воду. Відсутність хоча б одного із згаданих трьох вітамінів порушує цей важливий життєвий процес.

Встановлено, що при посиленому споживанні вітамінів А і D також зростає витрата і тіаміну. Розвиток D-гіпервітамінозу гальмується при введенні вітамінів групи В. Отже, збільшуючи вміст вітамінів групи В у раціоні, можна менше побоюватися великих доз вітаміну D.

Наведені приклади свідчать про необхідність, при визначенні потреби у вітамінах, по можливості враховувати взаємодію окремих вітамінів між собою. Облік такої взаємодії особливо необхідний при призначенні синтетичних вітамінних препаратів, оскільки в харчових продуктах вітаміни найчастіше знаходяться в гармонійному поєднанні.

При підрахунку потреби у вітамінах варто також мати на увазі і взаємодію між вітамінами і харчовими продуктами.

Вітамінна недостатність і її форми. При розгляді питання про потребу організму людини і тварин у вітамінах зазвичай відзначають три варіанти добових дозувань (норм):

1) оптимальні,

2) середні ;

3) мінімальні норми.

При цьому під оптимальними дозами вітамінів розуміється така їх кількість, яка в змозі забезпечити всі фізіологічні процеси на самому їх високому рівні. Іншими словами, при введенні в організм таких кількостей вітамінів навіть підвищені навантаження, скоювані в незвичайних умовах, вітамінної недостатності не викликають.

Середні дози (норми) – це кількість вітамінів, які в змозі забезпечити фізіологічні процеси при помірних фізичних і нервових навантаженнях, при помірно вираженому впливі температури і інших умов зовнішнього середовища

І, нарешті, мінімальні норми – це такі, які забезпечують фізіологічні процеси організму в стані його фізичного спокою (або легких навантажень). При вживанні вітамінів нижче за ці норми розвивається той або інший специфічний патологічний процес (гіпо- або авітаміноз). Отже, за наявності невідповідності між витратою вітамінів і їх надходженням, коли перше перевищує друге, розвивається вітамінна недостатність, що обумовлює початкові патологічні зміни в організмі (порушення обміну речовин, функціональні розлади). При зниженні дозувань нижче за мінімальні ці зміни збільшуються і на їх фоні розвиваються нові якісні реакції у вигляді специфічних патологічних процесів в більш менш вираженій формі.

Гіповітамінозні стани характеризуються значною строкатістю проявів, за відсутності чіткої окресленої клінічної картини. Ці стани обумовлені в основному порушеннями обміну речовин, функціональною неповноцінністю окремих систем організму людини і тварин. Авітамінози мають окреслену клінічну картину і є наслідком вираженої вітамінної недостатності. І хоча останні були вивчені раніше і краще, проте гіповітамінозні стани мають більше практичне значення, оскільки вони зустрічаються незрівнянно частіше, ніж авітамінози.

Причини порушення вітамінного обміну досить багатоманітні. Прийнято виділяти дві основні групи чинників, які обумовлюють розвиток вітамінної недостатності:

1. Екзогенні, зовнішні причини, які обумовлюють розвиток первинних гіпо- і авітамінозів.

2. Ендогенні, внутрішні причини, що призводять до розвитку вторинних гіпо- і авітамінозів.

Звичайно, існує і третя група – це змішані гіпо- і авітамінози, в розвитку яких беруть участь чинники як зовнішнього, так і „внутрішнього порядку”.

З урахуванням механізмів розвитку вітамінної недостатності виділяють декілька форм гіпо- і авітамінозів.

Аліментарна форма. За своїм походженням це екзогенні, первинні гіпо- і авітамінози, обумовлені недостатнім вмістом (рідко повною відсутністю) вітамінів в їжі. Отже, дана форма гіповітамінозу в основному обумовлена порушеннями в побудові харчового режиму. При цьому недостатній вміст вітамінів в їжі може бути викликаний як нераціональним підбором продуктів (відсутність овочів або неправильне їх зберігання, виключення чорного хліба і т. д.), так і неправильною їх кулінарною обробкою.

Проте в забезпеченні вітамінної повноцінності добового раціону живлення важливе значення має не тільки кількість вітамінів, що вводяться, але і склад їжі. Встановлено, що навіть при достатньому (за нормами) споживанні вітамінів можуть виявлятися ознаки вітамінної недостатності, якщо в раціоні буде порушено співвідношення окремих складових компонентів їжі. При переважанні вуглеводів (вище встановлених норм) організму потрібна додаткова кількість тіаміну (В1). Отже, при тривалому збереженні подібної спрямованості добового раціону можуть розвиватися явища В1-недостатості. При цьому збільшується також витрата вітаміну В2 і С.

Проте, не дивлячись на велику роль якісних порушень режиму живлення, основного практичного значення набувають порушення кількісні, пов’язані з пониженим вмістом окремих вітамінів у готовій їжі. Саме цей шлях порушення вітамінного балансу найчастіше веде до розвитку як неспецифічних, так і специфічних патологічних процесів, обумовлених вітамінною недостатністю. Найголовнішими причинами зниження кількості окремих вітамінів в готовій їжі є:

а) неправильне зберігання продуктів (особливо овочів), що призводить до руйнування деяких вітамінів (особливо вітаміну С);

б) одностороннє живлення, особливо з виключенням овочів, які є основними носіями вітамінів С, Р та ін.;

в) порушення правил кулінарної обробки продуктів, яке разом з незадовільним їх зберіганням може призвести до значного зменшення кількості вітамінів в готовій їжі.

В практиці згадані причини рідко існують ізольовано одна від одної. Найчастіше вони поєднуються між собою і завдають серйозного збитку вмісту вітамінів у добовому раціоні. Це і є основною причиною розвитку аліментарної форми вітамінної недостатності.

Резорбційна форма. Ця форма гіповітамінозів відноситься за своїм походженням до ендогенної вітамінної недостатності, обумовленої причинами внутрішнього порядку. Серед них найбільшої уваги заслуговують:

а) часткове руйнування вітамінів в травному тракті і

б) порушення їх всмоктування.

Встановлено, що при захворюваннях шлунку, які супроводяться пониженням кислотоутворюючої його функції, значному руйнуванню піддаються тіамін, нікотинова кислота і вітамін С. Відомо, що після резекції пілоричного відділу розвивається пелагра, а при виразці дна шлунку – порушення синтезу гастромукопротеїну призводить до розвитку гіперхромної анемії Аддісон-Бірмера.

Було відзначено також порушення всмоктування вітамінів з кишечника за наявності секреторно-моторних його розладів та хронічних інфекційно-запальних процесів. При недостатньому надходженні у верхній відділ кишечника жовчі порушується всмоктування каротину (провітаміну А) і інших жиророзчинних вітамінів.

Таким чином, в розвитку резорбційної форми гіповітамінозу велике значення мають деякі шлунково-кишкові захворювання.

Дисиміляційна форма. Основу даної форми гіповітамінозу складають різного роду порушення обміну речовин, що призводять до змін обміну вітамінів і до подальшого розвитку того або іншого гіповітамінозу. Виділяють декілька варіантів їх розвитку:

1. Порушення співвідношення окремих компонентів їжі (переважно вуглеводне живлення, білкова недостатність добового раціону та ін.), що змінює обмін вітамінів. У ряді випадків це веде до розвитку вітамінної недостатності за рахунок порушення обмінних процесів.

2. Збільшення потреби організму у вітамінах у зв’язку з впливом на нього різних чинників зовнішнього середовища.

Крім клімато-географічних чинників, певне значення має також збільшений попит організму на вітаміни, обумовлений різними видами виробничої діяльності окремих груп населення (робота в гарячих цехах і т. д.).

3. Порушення вітамінного обміну при інфекційних процесах також примикають до дисиміляційної форми гіповітамінозу. Встановлено, що чим важче інфекційно-токсичний процес, тим більше вітамінів витрачається організмом.

4. Порушення внутрішніх перетворень окремих вітамінів, які наступають у результаті окремих захворювань печінки (гострий і хронічний гепатити, цирози печінки та ін.). Показано, що при цих захворюваннях:

1) порушуються процеси фосфорилування тіаміну і перехід його в кокарбоксилазу, що веде до різкого порушення вуглеводного обміну з утворенням недоокислених продуктів і особливо піровиноградної кислоти.

2) страждає депонування і окислення рибофлавіну;

3) порушується перехід каротину у вітамін А і депонування останнього;

4) знижується вміст нікотинової кислоти.

Таким чином, дисиміляційна форма гіповітамінозу може бути обумовлена різноманітними причинами або їх поєднанням.

Окрім розглянутих вище форм вітамінної недостатності, негативний вплив на вітамінний баланс в організмі можуть проявляти і деякі ліки (сульфаніламіди і антибіотики та ін).

Назви і класифікація вітамінів. На даний час відомо понад двадцяти вітамінів (табл. 1). З них найбільше значення мають близько дванадцяти. У міру відкриття вітаміни позначалися буквами латинського алфавіту і називалися за їх біологічною роллю: вітамін А – аксерофтол, вітамін Е – токоферол і т.д. В ході розвитку вчення про вітаміни буквені позначення довелося розширити, оскільки виявлялися нові індивідуальні речовини близького, аналогічного або нового біологічного значення. До буквених позначень почали приєднувати цифрові. Так, замість однієї назви „вітамін В” виникла ціла група – від вітаміну В1 до вітаміну В15. У міру розшифровки структури молекул вітамінів їм почали давати хімічні назви: нікотинамід, піридоксаль, тіамін, рибофлавін і т.д. Таким чином, у даний час використовуються буквені, тривіальні (названі по специфічній дії на організм) і хімічні назви окремих вітамінів. У 1956 р. Комісія по біохімічній номенклатурі Міжнародного союзу чистої і прикладної хімії прийняла нову номенклатуру вітамінів – ЮПАК, основану на хімічній будові молекули кожного вітаміну.

Існує декілька класифікацій вітамінів. Основні з них – фізична і хімічна.

Згідно фізичної класифікації всі вітаміни за ознакою розчинності в жирах або воді поділяються на дві групи: жиро- і водорозчинні. Ця класифікація є загальновизнаною. Деякі вчені (В.В. Єфремов) виділяють ще одну групу – вітаміноподібні сполуки, в яку входять холін, ліпоєва кислота, оротова кислота, вітамін В15, інозит, g-амінобензойна кислота, карнітин, вітамін U. Хімічна класифікація вітамінів основана на характері будови молекул: вітаміни аліфатичного ряду, вітаміни аліциклічного ряду, вітаміни ароматичного ряду, вітаміни гетероциклічного ряду.

Ми розглядаємо вітаміни за фізичною класифікацією.

Жиророзчинні вітаміни

Жиророзчинні вітаміни не розчиняються у воді, але розчиняються в органічних розчинниках, термостабільні, стійкі до зміни рН середовища, можуть частково депонуватися в тканинах людського і тваринного організмів. Найчастіше виконують пластичні функції – беруть участь у формуванні структури і функціях клітинних мембран, рості і розвитку ембріонів (вітамін E), утворенні і регенерації кісткової (вітамін D) і епітеліальної (вітамін А) тканин, у процесах зсідання крові (вітамін К). Жиророзчинні вітаміни зазвичай не синтезуються в організмах людини і тварини. До цієї групи вітамінів належать вітаміни А, D, E, К, F і УХ.

Вітамін А. Дія вітаміну була відома задовго до нашої ери. На способи запобігання авітамінозу вказував ще Гіппократ (460 – 377 до н.е.). Спочатку вітамін був відкритий у молоці і названий як активний початок вершкового масла і риб’ячого жиру „розчинний в жирах чинник А”. Тільки в 1916 р. він отримав назву вітамін А.

Гіпо- і авітамінози. При недостатній кількості вітаміну А в раціоні сповільнюється ріст і розвиток, порушується структура покривних тканин – ороговіває епітелій. У людини і тварин порушується діяльність слізних залоз, виникає сухість рогівки ока (ксерофталмія), розм’якшується і дегенерує рогівка (кератомаляція), слабшає, особливо в темноті, і зникає зір (гемералопія). Порушується регенерація і відбувається розпад епітелію шкіри (дерматити), харчового каналу (виникає коліт), дихальних шляхів (бронхіти), у самок ороговіває епітелій піхви (кератити) і запалюється слизова оболонка сечовивідних шляхів (пієліти, утворюється вторинне ниркове каміння).

До недостатньої кількості вітаміну в раціоні особливо чутливі молоді організми: діти, телята, поросята і курчата. При цьому у курчат різко збільшуються розміри залозистого шлунку, порушується його евакуаторна і секреторна діяльність, що призводить до зменшення продуктивності і летального результату.

Гіпервітаміноз. При надлишку в раціоні вітаміну А або каротиноїдів виникає інтоксикація організму, з’являються судоми, парези, паралічі, втрата шерсті у тварин (навкруги рота і на шиї). Стоншування і переломи довгих трубчастих кісток, різні крововиливи (геморагії), кон’юнктивіти, риніти, ентерити, набряк мозку, може бути летальний результат.

Хімічна будова і властивості. Група вітаміну А включає декілька вітамінів, головними з яких є вітамін A1 (ретинол) і вітамін А2 (дегідроретинол). Хімічна будова цих вітамерів (різні форми одного і того ж вітаміну) вельми схожа. Всі вони в основі молекули мають b-іононове кільце, сполучене бічним ланцюгом з двома залишками ізопрена із спиртовою групою:

Спиртові групи ретинолу і дегідроретинолу вступають в реакції окислення, етерифікації, відновлення, внаслідок чого в процесі метаболізму крім вітаміну А-спирту може утворюватись вітамін А-кислота (ретиноєва кислота), вітамін А-альдегід (ретиналь) і вітамін А-ефір (пальмітат вітаміну А, ацетат вітаміну А). Кожна з цих форм виконує певну, характерну для неї, роль у різноманітних метаболічних процесах. У крові циркулює переважно спиртова форма вітаміну А, сітківці ока – альдегідна. В печінці вітамін А депонується у формі складних ефірів з вищими жирними кислотами, переважно у вигляді пальмітату.

Вітаміни групи А – кристалічні речовини блідо-жовтого кольору, голчатої форми, нерозчинні у воді і розчинні в органічних розчинниках. Термостабільні навіть при нагріванні до 120 – 130°C. При дії сонячного світла молекули вітамерів швидко руйнуються.

Природні джерела і потреба. Чистий вітамін А міститься в печінці, особливо в печінці риб (наприклад, морського окуня – до 37%, палтуса – до 2,5 – 5% загальної маси), коров’ячому маслі і молоці. Травоїдні тварини одержують вітамін з кормами у вигляді рослинного пігменту, провітаміну каротину. Існують a-, b-, і g-каротини. Найбільшу цінність представляє b-каротин, при гідролізі молекули якого в харчовому каналі утворюється дві молекули вітаміну А:

 

Каротинами багатий стручковий перець (853 мг/кг), червона морква, пасовищна трава, зелена конюшина, кормова морква, люцерна.

Кількість вітаміну А визначається інтернаціональними одиницями, скорочено ІО. Кожна ІО містить в собі 0,68 мкг b-каротину або 0,38 мкг вітаміну А. Середня добова потреба людини тварин у вітаміні А, ІО в перерахунку на 100 кг живої маси така: людина – 2000 – 5000; корова (в період сухостою 15000 – 20000; під час лактації 10000 – 15000 + 5000 на 1 кг молока); коні 10000 – 15000; телята і лошата 10000 – 15 000; свиноматки 12000 – 15 000; поросята 12000 –15000. Потреба птахів у вітаміні А задовольняється раціонами, що містять 6000 – 10000 ІО/кг корму.

Обмін вітаміну А в організмі. Вітамін А і каротини з їжею та кормами поступають в харчовий канал. Ефіри вітаміну А гідролізуються до активної форми вітаміну А – ретинолу і вищих жирних кислот. Гідроліз каротинів здійснюється каротиназою ефірів – естеразою підшлункового і кишкового соків, емульгування – жовчю. Вітамін А і частина каротинів всмоктуються слизовою оболонкою тонкої кишки, потім – через кровоносну та лімфатичну системи поступають в печінку, з неї – до інших органів і тканин, де використовуються для структурних і метаболічних потреб.

У печінці нагромаджується до 90% загальної кількості вітаміну А. Невелика кількість вітаміну зосереджена також в мітохондріальній, мікросомальній і ядерній фракціях нирок, легенях, наднирниках, залозах внутрішньої секреції, молочних залозах, шкірі і, особливо, сітківці ока. Надлишок вітаміну А виділяється з калом, а в умовах патології – із сечею. В молоці різних тварин міститься 0,5 – 0,7 мг/кг вітаміну А, в коров’ячому – ще і каротинів 0,08 – 0,24 мг/кг.

Значення вітаміну А для обміну речовин. Вплив вітаміну А на обмін речовин багатогранний. Механізм окремих реакцій обміну поки що не вивчений. Вважають, що вітамін А – незамінний компонент плазматичної мембрани, де він виконує функції рецептора речовин – сигналів, які мають відношення до диференціювання і морфогенезу. Здатність вітаміну А запобігати виникненню інфекційних захворювань забезпечила йому назву – антиінфекційний. При А-вітамінній недостатності сповільнюється біосинтез глікогену і прискорюється гліколіз, порушується обмін різних груп мукополісахаридів, сповільнюється біосинтез білків, зменшується вміст ліпідів. Вітамін А впливає на тканинне дихання і енергетичний обмін, оскільки від забезпеченості організму вітаміном залежать швидкість окислення трикарбонових кислот і процеси окислювального фосфорилування. Недостатня кількість вітаміну А позначається на біосинтезі кортикостероїдів, оскільки гальмується утворення стероїдного скелета на стадії перетворення сквалену в холестерин. У всіх цих реакціях вітамін може брати участь у формі спирту, альдегіду, кислоти і ефіру.

Виключно важлива роль вітаміну А для зору. Фотони через зіницю поступають в заломлюючі середовища очей (рогівку, кришталик, склоподібне тіло) і на сітківку. В сітківці є два види фоторецепторів – палички і колби. Палички і колби містять зоровий пурпур, або білок родопсин. До складу родопсину входить альдегід вітаміну А 11-цис-ретиналь (хромофорна група) і білковий компонент опсин. Родопсин поглинає кванти світла. Під їх впливом 11-цис-ретиналь ізомеризується в транс-ретиналь. Відбувається фотоліз молекули родопсина. При цьому виникають електричні сигнали, які передаються по шарах нервових клітин сітківки через зоровий нерв у середній і проміжний мозок, зорові області кори великих півкуль. Під впливом ферменту алкогольдегідрогенази транс-ретиналь частково відновлюється в транс-ретинол, який разом з транс-ретинолом, що поступив з током крові, під впливом ретинолізомерази таутомеризується в цис-ретинол. Останній під впливом алкогольдегідрогенази і за наявності НАД окислюється до цис-ретиналя, який з’єднується з опсином (по типу шифових основ), утворюючи родопсин. Під час зорового акту частина ретиналя руйнується. Для відновлення рівноваги необхідно, щоб в сітківку з крові поступали нові порції вітаміну А. Без цього наступає „куряча сліпота”. Біохімічні процеси при зоровому акті відображає схема:

Антивітаміни. До антиметаболітів відноситься один з продуктів окислення вітаміну А оксидом ванадію – „сполука Z”. Надходження цієї речовини в організм викликає типовий авітаміноз А.

Застосування вітаміну А. Раціон багатий каротином, і препарати вітаміну А застосовуються при лікуванні гіпо- і авітамінозів, при захворюванні очей, травних органів, дихальних і сечостатевих органів, дерматитах, повільній епітелізації ран і язв, аліментарній дистрофії та ін.

Вітамін D. З групи вітамінів D найважливішими є два вітамери: D2 (ергокальциферол) і D3 (холекальциферол). Назва вітаміну D1 не вживається, оскільки він є неочищеним препаратом, що складається з суміші кальциферолу та інтактної речовини люмістерину. Вітамін D часто називають антирахітичним, оскільки він оберігає людину і тварин від рахіту.

Гіпо- і авітамінози. За відсутності або недостатньої кількості в раціоні вітаміну D у дітей і молодняка тварин, розвивається рахіт, у дорослих – остеомаляція, у старих – остеопороз. Іноді ці явища виникають при порушенні в раціонах співвідношення Ca : P (норма 2:1 або 1:1, патологія – 3:1 або 1:2), за відсутності інсоляції і моціону.

Рахіт спостерігається у дітей та молодняка тварин в період активного росту кісток, найчастіше – у поросят, лошат, телят і курчат. Найбільш чутливі до цього захворювання курчата. Ранні ознаки захворювання виявляються в міопатіях (втрата тонусу м’язів, ослаблення їх – гіпотонія). З’являється о- і х-подібна постановка кінцівок, спостерігається викривлення хребта, западає грудна клітка. Разом з тим спостерігається розростання кісткової тканини на реберних дугах – „рахітичні чотки”, з’являються „бугри” на черепі і „браслети” на епіфізах кінцівок. Внаслідок затримки процесів окостеніння кісток черепа значно збільшуються розміри голови, порушується розвиток зубів, запізнюється їх прорізування й утворення дентину. Хода стає скутою, суглоби опухають, можливе виникнення ознак тетанії. Кістки стають м’якими, легко ріжуться ножем, деформуються і не здатні протистояти механічному навантаженню. В крові різко зменшується вміст кальцію і фосфору, а в кістках – вміст фосфорнокислих солей кальцію. Спостерігаються втрата апетиту, апатія, диспепсичні явища (блювання, понос), анемія, нерідко спостерігається загибель тварин.

У хворих значно зменшується вміст гемоглобіну, порушується діяльність серцево-судинної системи, знижується артеріальний тиск, збільшується розміри серця. Спостерігається підвищена збудливість, пітливість, поганий сон.

Остеомаляція – захворювання організму, що характеризується розм’якшенням і деформацією кісток у результаті порушення мінерального обміну. У тварин знижується апетит (з’являється „лизуха” і поїдання неїстівних речовин), з’являється кульгавість, розхитуються зуби, викривляється або прогинається хребет, спостерігається швидка втомлюваність і залежування. Декальцинуються хвостові хребці і інші кістки скелета.

У старих людей і тварин при недостатній кількості або відсутності вітаміну D, порушеннях співвідношення в раціоні Ca:P, виникає остеопороз – розрідження губчастої і компактної речовини кісток у результаті розсмоктування кісткової тканини. Виникають спонтанні переломи.

Гіпервітаміноз. Виникає при надлишку в раціоні вітаміну D. З’являються гіперкальцинемія, явища диспепсії, порушуються травлення, серцева діяльність, різко знижується рівень продуктивності, кістки стають неміцними і можуть бути спонтанні переломи. За даних умов підвищується температура тіла і кров’яний тиск, значно збільшується концентрація кальцію в крові, спостерігається кальцифікація деяких тканин і органів – нирок, серця, легень, а також стінок кровоносних судин. Введення в організм додаткової кількості вітаміну А знімає токсичність надмірних доз вітаміну D.

Хімічна будова і властивості. Вітамін D є похідним вуглеводня циклопентанпергідрофенантрена. Вітамери D2 і D3 мають попередників (провітамінів): ергостерин, що міститься в рослинних кормах і дріжджах, і 7-дегідрохолестерин, що утворюється в тканинах тварин з холестерину. Обидва попередники перетворюються на вітаміни в підшкірній жировій клітковині під впливом ультрафіолетового проміння через ряд проміжних реакцій:

Вітамін D є безбарвною кристалічною речовиною з невисокою температурою плавлення, він не розчиняється у воді, але розчиняється в жирах і органічних розчинниках, при нагріванні до 125°C розкладається.

Природні джерела і потреба. Людина і тварини одержують як чистий вітамін D, так і у вигляді попередників. Найбільше ергостерину міститься в пекарних дріжджах (до 2% сухої маси), дещо менше в кормових. 7-Дегідрохолестерин утворюється з холестерину в шкірі при ультрафіолетовому опромінюванні. Обидва попередники складають 34 – 56% активності відповідних вітамерів. Активність вітаміну D визначається в інтернаціональних одиницях (ІО): 1 ІО = 0,025 мкг вітаміну D2. В їжі та кормах натуральної вогкості міститься така кількість вітаміну D в мг, ІО: пивні дріжджі – 2,5 – 12,5 мг на 100 г; жовток яйця – 0, 0125 мг на 100 г; молоко – 0,00025 мг на 100 г; печінковий жир (тунець – 100 – 150 мг на 100 г; тріска – 0,125 – 0,750 мг на 100 г); сіно лугове, висушене на сонце 620 ІО на 1 кг; сіно лугове, висушене під навісом 210 ІО на 1 кг; сіно люцерни 570 – 300 ІО на 1 кг; кукурудзяний силос 150 ІО на 1 кг; зелені частини рослин, капуста, картопля – 0.

Людина і тварини потребують вітаміну D. Так, середня добова потреба у вітаміні для людини складає – 500 – 1000 ІО, корови – 5000 – 8000 ІО на 100 кг живої маси, вівцематок – 500 – 1000, свиноматок і кабанів – 1000 – 2000, поросят (на голову) – 250, курчат – 450 ІО.

Обмін вітаміну D в організмі. Вітамін D всмоктується в тонкій кишці. Процес всмоктування стимулюється наявністю в раціоні жирів і присутністю в химусі жовчі. У людини і щурів всмоктується близько 80% вітаміну D, що знаходиться в їжі, у інших хребетних, особливо у жуйних, менше. Через лімфатичну систему у вигляді хіломікронів і біокомплексів вітамін D потрапляє в загальне кровоносне русло, потім у печінку. Частина вітаміну зв’язується з a2-глобулінами і переноситься в тканини. В організмі переважає вітамін D3 (85% всіх вітамерів).

Основним депо вітаміну D є шкіра, де його міститься в 2 – 3 рази більше, ніж у печінці і крові. Надлишок вітаміну D і продукти його розкладання (хопростерин та ін.) виділяються з калом.

Значення вітаміну D в обміні речовин. Роль вітаміну в обміні речовин багатогранна. Перш за все, вітамін бере участь в регуляції співвідношення Ca : P у крові, стимулює їх всмоктування в кишках (підвищується проникність слизової оболонки), сприяє перенесенню іонів Ca2+ від стінки кишок в плазму крові і від плазми крові в кісткову тканину, активує діяльність лужної фосфатази в зонах окостеніння і підтримує в плазмі крові на певному рівні добуток концентрації [Ca2+]×[HPO42-]. Існує зв'язок між регулюючою функцією вітаміну D і гормонами мінерального обміну – тиреокальцитоніном і паратгормоном. Вітамін D збільшує затримання іонів Ca2+ кістковою тканиною, засвоєння сірки хондроіцитами при утворенні хрящової тканини і остеоцитами – при синтезі оссеомукоїдів та оссеїна. При зменшенні концентрації іонів Ca2+ в крові вітамін D прискорює його перехід з кісток в кров.

Вітамін D є індуктором синтезу кальційзв’язуючого білка. Він посилює ДНК-залежний синтез РНК, що позитивно відображається на біосинтезі білків-переносників, відповідальних за всмоктування іонів Ca2+. Вітамін D посилює реакції окислювального фосфорилування і утворення фосфорних ефірів тіаміну. Він сприяє реабсорбції фосфатів, амінокислот і іонів Ca2+ з первинної сечі в плазму крові.

Антивітаміни. З деяких рослин і капусти була виділена речовина, яка володіє властивостями антивітаміна. Хімічна будова її не вивчена. Відомо, що в дозі 0,2 мкг/добу вона інактивує дію вітаміну D.

Застосування вітаміну D. Препарати вітаміну D використовують з профілактичною і лікувальною метою. Пологовому парезу корів можна запобігти, вводячи їм за декілька діб до пологів вітамін D. Вітамін D рекомендується вживати людині і тваринам при рахіті, остеопорозі, остеомаляції, тетанії поросят, переломах кісток, дерматитах в поєднанні з ультрафіолетовим опромінюванням.

Вітамін E. Вітамін E об’єднує групу природних і синтетичних речовин, які мають різний ступінь Е-вітамінной активності, названу токоферолами. Відкритий в 1922 р. як біологічний чинник, що оберігає людину і тварин від безплідності і порушення функцій розмноження. Тому його називають ще вітаміном розмноження (антистерильний).

Гіпо- і авітамінози. При недостатній кількості або відсутності вітаміну E в раціоні перш за все порушуються функції розмноження. У самців дегенерує епітелій насінних канальців, гальмується сперматогенез і згасають статеві рефлекси. У самок яєчник зберігає нормальну будову, але порушується розвиток плоду, що завершується абортом і безплідністю. Безплідність самок, на відміну від самців, в більшості випадків виліковна, якщо в раціон ввести потрібну кількість вітаміну E. Крім цього відсутність вітаміну Е негативно впливає на цілий ряд метаболічних процесів, а також структуру і функцію різних органів і тканин, насамперед на посмуговану м’язову тканину і м’язи серця. Це виявляється в міопатіях, м’язовій дистрофії яка у важких випадках закінчується паралічами мускулатури різних частин тіла. При гіповітамінозі порушується порозність клітинних мембран, зростає їх проникність, наступає розпад, особливо лізосом і мітохондрій. Відбувається гемоліз еритроцитів. Порушується фосфорний обмін, окислювальне фосфорилування, утворення АТФ у всіх тканинах і фосфагена в м’язах.

Авітаміноз, найчастіше спостерігається у свиней і, особливо, у курей, качок, індичок. Авітаміноз ембріонів птахів на 5 – 7-му добу розвитку завершується їх загибеллю.

Гіпервітаміноз. Вітамін Е не токсичний. При застосуванні його в лікувальній дозі ознак гіпервітамінозу не спостерігається.

Хімічна будова і властивості. Р. Еванс, О. Емерсон і Г. Емерсон у 1936 р. з масла зародків пшениці виділили дві речовини, які володіли Е-вітамінною активністю: a- і b-токофероли. Е-вітамінною активністю володіє також g-токоферол. Однак найбільшою біологічною активністю володіє a-токоферол. Якщо прийняти біологічну активність його за 100%, то активність b-токоферола складатиме – 40%, g-токоферола – 4 – 8%. Всі вони є похідними триметилгідрохінона і спирту фітола. Молекула токоферолів складається з хроманового ядра і залишку фітола:

b-Токоферол позбавлений метильної групи в положенні 7, g-токоферол – в положенні 5. Всі токофероли – жовті маслянисті рідини, добре розчиняються в жирах і органічних розчинниках, стійкі до нагрівання (навіть при 150 – 170°C зберігають активність), оптично активні, руйнуються під впливом ультрафіолетового опромінювання.

Природні джерела і потреба. Вітамін E синтезується в рослинах, дріжджах, водоростях. Деяка кількість токоферолів нагромаджується в м’ясі, салі, молоці, яєчному жовтку. Активність вітаміну вимірюється ІО: 1 ІО = 1 мг a-токоферол ацетату.

1 кг їжі та кормів натуральної вогкості містить такі концентрації вітаміну E, ІО: рослинні олії: (соняшникове – 35; соєве – 104; кукурудзяне – 100; облепіхове – 1680; бавовни – 70 – 100); зелені корми і силос – 20 – 50; сінна мука – 200; зерно 15 – 50; зародки зерна (пшениці – 150 – 300; кукурудзи – 150).

Добова потреба для людини у вітаміні Е точно не встановлена. Вважають, що орієнтовно в середньому вона становить 20 – 30 ІО, половина з яких припадає на a-токоферол. Для молочних корів і биків-виробників на добу потрібно 300 – 500 вітаміну E на 100 кг живої маси, телят – 20 –40, вівцематок – 30 – 50, свиноматок і кабанів – 60 – 100 ІО.

Обмін вітаміну E в організмі. До 80% прийнятого з харчами вітаміну E всмоктується в тонкій кишці. Депонується в печінці, жировій тканині, менше – в м’язовій, міокарді, наднирниках, селезінці, плаценті. В гепатоцитах і клітинах слизової оболонки кишечника щурів, наприклад, 50 – 60% a-токоферола сконцентровано в мітохондріях, 15 – 20% – в мікросомах і гіалоплазмі. Надлишок токоферолів і продукти їх розпаду виділяються в основному з калом, причому, токофероли не зазнають ніяких перетворень. У сечі виявляються продукти розпаду вітаміну E у вигляді хіноїдних сполук.

Значення вітаміну E в обміні речовин. Вітамін E сприяє біосинтезу білків, впливаючи на синтез молекул іРНК. З наявністю в клітинах вітаміну E пов’язана активність ферментів, що містять сульфгідрильні групи. Він бере участь у клітинному диханні як переносник електронів. З наявністю в тканинах достатньої кількості токоферолів пов’язані процеси синтезу убіхінона. Вітамін необхідний для утворення креатину і фосфагена, біосинтезу фосфатидів, ацетилхоліну, зв’язування протромбіна і перетворення каротинів у вітамін А. Токофероли, являючись природними антиоксидантами, оберігають тканини від накопичення перекисних сполук. З наявністю токоферолів пов’язана міцність мембран.

Антивітаміни. Антагоністами вітаміну E є альдегіди і кетон, які утворюються при гіркненні ліпідів і, особливо, жирів.

Застосування вітаміну E. Раціон, багатий вітаміном E, і препарати вітаміну E застосовують при лікуванні м’язової дистрофії, порушенні функцій статевого апарату, білом’язової хвороби. Вітамін застосовується з профілактичною метою. Його додавання до раціону оберігає від епідемічних абортів, усуває парези і паралічі. Невеликі добавки вітаміну E стабілізують масляні розчини вітамінів А і D і оберігають масла від гіркнення.

Вітамін К. Вітамін К складається з чотирьох природних форм – вітаміну K1 (філохінона) і вітаміну К2 (фарнохінона), К3 і К4. У 1942 р. О.В. Палладіним і M.M. Шемякіним був отриманий їх синтетичний аналог – вікасол. Біологічна активність філохінонів неоднакова. Вітамін К1 у 1,5 рази активніший за вітамін К2, а активність вітаміну К3 у 3 – 4 рази більша за активність вітаміну К1. Серед синтетичних аналогів найбільшу активність проявляє метинон, однак він відзначається поганою розчинністю і подразнюючим впливом на слизові оболонки, що значно обмежує його використання. Вітамін К називають антигеморагічним вітаміном.

Гіпо- і авітамінози. При недостатній кількості або відсутності в раціоні вітаміну К у людини і тварин виникає геморагічний діатез, крововиливи (підшкірні, носові, внутрішньом’язові, порожнинні), знижується здатність крові зсідатися і знижується в ній рівень протромбіна. Виникають явища анемії.

Найбільш чутливі до недостатньої кількості вітаміну: людина, птахи, менше – велика рогата худоба. Курчата гинуть через 2 – 3 тижні після початку авітамінозу.

Гіпервітаміноз. Надлишок вітаміну не викликає гіпервітамінозу.

Хімічна будова і властивості. Вітамери К – похідні нафтохінона з ізопреновими бічними ланцюгами різної довжини. Вітамін K1 включає ядро нафтохінона і залишок фітола:

Вітамін К2 відрізняється від попереднього будовою бічного ланцюга. До його складу входить від 30 до 45 атомів вуглецю і від 6 до 9 подвійних зв’язків. Формула вітаміну К2 має такий вигляд (n -число мономерів від 5 до 8):

У клінічній практиці застосовується натрієва сіль дисульфітного похідного 2-метил-1,4-нафтохінона – вікасол:

Вітамін К1 – є жовтою маслянистою рідиною, нерозчинною у воді, нестійкою при нагріванні в лужному середовищі і при ультрафіолетовому опромінюванні. Вітамін К2 – жовті кристали, з температурою плавлення 54°C, не розчиняються у воді, але розчиняються в органічних розчинниках.

Вікасол – це безбарвні кристали, які добре розчиняються у воді, мають температуру плавлення 105 – 106°C, при дії сонячного світла перетворюються в димер.

Природні джерела і потреба. Джерелами вітаміну К є зелені частини рослин, в мг на 100 г сухої маси: люцерна – 1,7 – 3,4; лугова трава – 1,7; капуста – 0,6 – 3,4; шпинат – 4,0 – 6,0; гарбуз – 4,0; горох – 0,7; морква та ягоди шипшини – по 0,08.

З продуктів тваринного походження: печінка – 0,4 – 0,8; яйця – 0,08; м’ясо великої рогатої худоби – 0,8 і рибна мука.

У людини, дорослих жуйних і свиней потреба у вітаміні може частково задовольнятися за рахунок бактерійного синтезу в харчовому каналі.

Добова потреба людського організму за О.В. Палладіним складає 15 мг (в перерахунку на вікасол). Телятам і поросятам при ранньому відбиранні слід додавати в корми вітамін К з розрахунку 1 – 5 мг/кг корму. Особливо чутливі до недостатньої кількості вітаміну птахи. Курчатам, бройлерам в корм додається вітамін К в дозі 1 – 2 мг/кг корму або 2% сіно люцерни.

Обмін вітаміну К в організмі. Вітамін К всмоктується разом з ліпідами в краніальних ділянках тонкої кишки. Ці процеси активуються жовчю. 25 – 51% введеного в організм вітаміну депонується в мікросомах печінки. Частина вітаміну депонується в тканинах міокарду, селезінки, в ретикулоендотеліальній системі.

Метаболіти вітаміну К виділяються в основному з сечею, у вигляді кон’югатів з глюкуроновою кислотою, частково – з калом.

Значення вітаміну К для обміну речовин. Вітамін К бере участь в біосинтезі компонентів, необхідних для зсідання крові.

За його участю в гепатоцитах утворюється протромбін, який при необхідності переходить в тромбін (без нього неможливе перетворення фібриногена у фібрин).

Крім антигеморагічної дії вітамін К виявляє також позитивний вплив на окисно-відновні процеси в організмі. Вітамін К є простетичною групою ферменту менадіонредуктази. Він бере участь у перенесенні електронів від відновленого НАДФ∙Н2 на молекулярний кисень через систему цитохромів, а також є стимулятором процесів окислювального фосфорилування, в результаті яких здійснюється синтез макроергічних сполук, зокрема, АТФ, КФ та ін. З присутністю вітаміну К в тканинах пов’язана активність креатинкінази, гексокінази і міозинової АТФ-ази. Вітамін К стимулює біосинтез білків крові – альбумінів і глобулінів, ферментів амілази, пепсину, трипсину, ліпази і ентерокінази. Існує синергізм і взаємозамінність вітамінів К і E в реакціях енергетичного обміну. Вітамін К запобігає токсичній дії вітаміну А при гіпервітамінозі.

Антивітаміни. Для вітаміну К існує декілька антивітамінів: дикумарол – міститься в тухлому конюшиновому сіні, саліцилова кислота, дифтіокол, тримексан (в 50 разів активніше дикумарола) та ін.:

     

Застосування вітаміну К. Вітамін К та його препарати (метинон, вікасол та ін.) використовують для лікування геморагій, кровотеч після хірургічного втручання, гепатитах, хронічних виразках, К-авітамінозах, отруєннях дикумарином.

Вітамін F. Вітамін F є комплексом ненасичених жирних кислот, які не можуть синтезуватися в організмі людини і тварини. Це лінолева, ліноленова і арахідонова кислоти.

Гіпо- і авітамінози. Причиною гіпо- і авітамінозів є недостатня кількість або повна відсутність у раціоні ненасичених вищих жирних кислот. Ознаки F-авітамінозу у людини не відомі. У тварин виникає сухість і лущення шкіри, випадає шерсть і спостерігається кільчасте відкладення лупи на лапах, вухах і хвості, відмирає кінчик хвоста, затримується ріст, порушується лактація і репродукція. Ряд ділянок шкіри уражаються дерматитами, в стінках кровоносних судин відкладається надлишок холестерину, порушується їх еластичність, утворюються атероматозні бляшки у коронарних судинах, що призводить до розвитку атеросклерозу, наступають розриви судин і крововиливи.

Гіпервітамінози не спостерігаються.

Хімічна будова і властивості. Для ненасичених жирних кислот, які складають вітамін F, характерні подвійні зв’язки:

 

Найбільшою біологічною активністю володіє арахідонова кислота, однак у харчових продуктах її міститься незначна кількість. Ліноленова кислота малоактивна й основна її роль заключається в активації лінолевої кислоти, яка міститься у продуктах у значній кількості. При наявності піридоксину лінолева кислота перетворюється на ліноленову та арахідонову:

Лінолева кислота  g-Ліноленова кислота  Арахідонова кислота

Останнім часом до речовин, які володіють F-вітамінною активністю також відносять нонадекадеїнову, ейкозадеїнову і октадекатрієнову кислоти. Ненасичені жирні кислоти, що складають вітамін F, – це безбарвні олієподібної консистенції рідини, які не розчиняються у воді і розчиняються в органічних розчинниках, киплять при високих температурах (лінолева – 182°C, ліноленова – 184°C).

Природні джерела і потреба. Ненасичені жирні кислоти містяться переважно у рослинних оліях: горіховій (63 – 76%), маковій (63 – 74%), соняшниковій (52 – 64%). Лінолева кислота входить до складу тригліцеридів рослинних олій і тваринних жирів (китового). До 30% залишків ліноленової кислоти міститься в тригліцеридах льняної олії, до 55% – перилевої олії. Арахідонова кислота – складова частина жирів рослин бобів. Добрим джерелом арахідонової кислоти є олія земляного горіха – арахісу.

Потреба людини і тварин у вітаміні F вивчена недостатньо. Добова потреба в поліненасичених жирних кислотах за даними деяких дослідників складає 2 – 10 г.

Обмін вітаміну F в організмі. Вітамін F поступає в організм у складі жирів. Перетравлювання і всмоктування їх аналогічно перетравлюванню і всмоктуванню жирів. Відкладається в печінці, потім з током крові поступає в різні тканини і клітини. Служить сировиною для біосинтезу більшості ліпідів. Ліпіди наднирників містять близько 20% залишків арахідонової кислоти. Обмін ненасичених жирних кислот протікає звичайним шляхом.

Значення вітаміну F для обміну речовин. Біологічна активність вітаміну пов’язана з наявністю в його молекулі подвійних зв’язків. Бере участь у обміні ліпідів, у посиленні ліпотропного впливу холіна, сприяє виділенню надлишку холестерину з організму, утворюючи з ним розчинні стериди. Стінки кровоносних і лімфатичних судин після видалення нерозчинних ефірів холестерину набувають еластичності і стійкості. Впливає на стан шкірного і шерстного покриву, репродукцію і молочну продуктивність.

Вітамін F стимулює дію деяких вітамінів (С, В1, В6). Вітамін B6 сприяє біосинтезу тканинами деяких жирних кислот, що входять до складу вітаміну F.

Є дані відносно позитивного впливу вітаміну F при захворюваннях ендокринних залоз (гіпотиреозі), а також при різних дерматитах та екземах.

Антивітаміни не встановлені.

Застосування вітаміну F. У клінічній практиці застосовують лінетол – суміш тригліцеридів трьох жирних кислот, що складають вітамін F. Його одержують з льняної і соняшникової олій. Використовується при лікуванні опіків. При вживанні всередину оберігає організм від атеросклерозу.

УбіхІнон. Убіхінон був відкритий у 1955 р. у складі жирів. Назва вітаміну дана у зв’язку з повсюдним розповсюдженням його в клітинах.

Гіпо- і авітамінози вивчені недостатньо.

Гіпервітамінози не відомі.

Хімічна будова і властивості. Вітамін є похідним хінона, який містить метильну, дві метоксильних групи в ядрі і угрупування ізопрена, що складається з 6 – 10 мономерів – в бічному ланцюзі:

Якщо бічний ланцюг містить шість мономерів (n=6), то убіхінон позначають УХ6. У ссавців переважає УХ10 (n=10), у комах – УX9 (n=9) або УХ10, у рослин – УХ8-10 і т.д. Убіхінон – безбарвна кристалічна речовина, нерозчинна у воді і розчинна в органічних розчинниках.

Природні джерела і потреба. Убіхінон присутній у всіх живих організмах. Сам вітамін може синтезуватися в організмі тварини з бензохінона і поліізопренового ланцюга. Вітамін знайдений в мітохондріях, мікросомах і розчинній фракції клітин. Багато його міститься в тканинах міокарду. Потреба в цьому вітаміні не вивчена.

Обмін вітаміну в організмі. Організми одержують убіхінон з їжею та кормами і частково в результаті синтезу власними тканинами. Обмін вітаміну в організмі вивчений недостатньо.

Значення вітаміну для обміну речовин. Убіхінон – обов’язковий компонент дихального ланцюга при біологічному окисленні. Локалізується на внутрішніх мембранах мітохондрій, бере участь у перенесенні електронів і протонів у дихальному ланцюзі на ділянці між флавопротеїдом і цитохромом b. Біологічна дія вітаміну як кофермента основана на його здатності до оборотних окисно-відновних перетворень. Він акцептує протони і електрони, що поставляються різними дегідрогеназами (СДГ, ЛДГ, МДГ, АДГ), і передає їх у цитохромний ланцюг.

Антивітаміни не встановлені.

Застосування вітаміну. Убіхінон застосовується в клініці. Були отримані позитивні результати при лікуванні деяких серцево-судинних захворювань, зокрема, інфаркту міокарду.

Водорозчинні вітаміни 

Водорозчинні вітаміни не розчиняються в жирах і багатьох органічних розчинниках, але добре розчиняються у воді, термолабільні, не стійкі до змін рН, не можуть депонуватися в тканинах. Є складовими частинами ферментів і безпосередніми учасниками більшості реакцій обміну речовин у всіх живих, організмах.

До водорозчинних відносяться вітаміни B1, B2, B3, В5, B6, Вс, B12, H, С і P.

Вітамін В1. Вітамін В1 (тіамін) – один з перших вітамінів, відкритих наукою. Вивчення вітаміну було пов’язано із з’ясуванням захворювання „бері-бері”, поширеного в країнах Південно-східної Азії.

Гіпо- і авітамінози. При недостатній кількості або відсутності в раціоні вітаміну В1 розвиваються гіпо- і авітамінози. У людини і тварин В1-авітаміноз екзогенного походження пов’язаний перш за все з неповноцінністю харчування.

Важливе значення в етіології авітамінозу відіграють також ендогенні фактори, а саме:

а) підвищена потреба в ньому при різних захворюваннях (тиреотоксикозі, алкоголізмі), а також під час вагітності і лактації;

б) порушення всмоктування вітаміну В1 внаслідок розладу секреторної функції тонкої кишки;

в) руйнування вітаміну В1, у травному каналі внаслідок розвитку в ньому патологічної мікрофлори, зокрема бацил, що містять тіаміназу.

У людини найбільш ранніми проявами нестачі вітаміну В1 є втрата апетиту, порушення секреторної і моторної функцій кишок. Спостерігаються також порушення з боку нервової системи: підвищена збудливість, боязливість, схильність до галюцинацій, втрата здатності до зосередження та втрата пам’яті на недавні події, порушення розумової діяльності. При більш тривалій відсутності вітаміну В1 виникає втрата чутливості, сильні болі по ходу нервових волокон, особливо в нижніх кінцівках, розвивається м’язова слабкість, у важких випадках – атрофія м’язів, параліч спочатку нижніх, а потім і верхніх кінцівок, кахексія (виснаження). Останні симптоми особливо характерні для важких форм В1-авітамінозу, внаслідок яких розвивається захворювання „бері-бері”. За В.Б. Спіричевим, розрізняють три форми захворювання „бері-бері”: 

1. Суха, або поліневритна, форма, коли на перший план поряд з кахексією виступають порушення периферичної нервової системи; 

2. Форма, при якій крім явищ поліневриту спостерігається також порушення діяльності серцево-судинної системи з ураженням серцевого м’яза; 

3. Перниціозна форма, при якій досить швидко настає смерть внаслідок гострої серцевої недостатності.

Що стосується тварин, то до недостатньої кількості в раціоні вітаміну B1 найбільш чутливі птахи, телята, ягнята, коні, свині, собаки і хутрові звірі. При цьому спостерігаються порушення нервової діяльності (парези і паралічі), серцево-судинної системи (стенокардія), харчового каналу (зменшується секреція травних залоз, атонія, відсутність апетиту), різко падає рівень продуктивності. У птахів на ранніх стадіях авітамінозу виникають судоми м’язів шиї, у свиней порушується ритм роботи серцевого м’яза. Розвивається гіперглікемія, ацидоз, в крові нагромаджується багато піровиноградної кислоти, в підшлунковій залозі дегенерують острівці Лангерганса, в наднирниках – хромафінна тканина, в різних ділянках нервової системи – нейрони. Розвиваються крововиливи, парези, паралічі, спостерігається різке виснаження і наступає смерть.

Гіпервітаміноз. Гіпервітаміноз вітаміну B1, як і більшості вітамінів групи В, зазвичай не спостерігається.

Хімічна будова і властивості. Вітамін В1 є похідним двох сполук – тіазола (4-метил-5-оксіетилтіазола) і піримідина (2-метил-5-оксиметил-6-амінопіримідина):

Вітамін B1 – білий кристалічний порошок гіркий на смак, з характерним запахом, в кислому середовищі стійкий до нагрівання до 140°C, в лужному – перетворюється на тіохром.

Природні джерела і потреба. Вітамін B1 синтезується тканинами рослин і мікробами. В 1 кг міститься вітаміну B1, мг: пивні дріжджі – 68,6; пекарські дріжджі – 30,0; трава (різнотрав’я, конюшина, люцерна) – 10,0; зерно ячменю – 3,1; картопля – 1,0. Невелика кількість вітаміну міститься також у продуктах тваринного походження: печінці – 0,04, м’ясі – 0,01 – 0,04.

Потребу у вітаміні організми задовольняють за рахунок екзогенного тіаміну (людина) і часткового бактерійного синтезу в харчовому каналі (ВРХ). Тіамін у жуйних (головним чином у рубці) синтезується бактеріями виду Flavobacterium vitarumen. Вміст вітаміну зменшується у міру переходу від рубця до сичуга.

Для людини добова потреба значною мірою залежить від віку, фізичного навантаження та фізіологічного стану організму і становить 2 – 3 мг на добу для дорослих і 0,5 – 2 мг для дітей і підлітків.

Добова потреба у вітаміні, наприклад, для свиней складає 1 – 1,8 мг на 1 кг сухої речовини корму, телят – 8 – 15 мг на голову, ягнят – 2 – 4 мг на голову.

Обмін вітаміну B1 в організмі. Організм одержує вітамін разом з харчами і за рахунок синтезу мікробами харчового каналу. Екзогенний тіамін поступає у вільному, етерифікованому і частково в зв’язаному вигляді. Дві останні форми розщеплюються в кишках під впливом відповідних гідролаз з утворенням вільного тіаміну. З током крові після всмоктування він швидко поступає до всіх органів і тканин. Частина тіаміну в печінці фосфорилується. Найбільші концентрації вітаміну виявлені в міокарді (до 360 мкг на 100 г), а також у печінці, мозку, легенях, нирках і наднирниках. Надлишок тіаміну і продукти його розпаду виділяються з сечею і частково з калом.

Значення вітаміну В1 для обміну речовин. Біологічне значення тіаміну перш за все обумовлено його коферментними функціями. Тіамін, який поступає в тканини з током крові, може фосфорилуватися під впливом ферменту тіамінпірофосфокінази. Тіамінпірофосфат складає 70 – 90% всіх фосфорних ефірів тіаміну тканин, решта кількості припадає на тіамінмонофосфат і тіамінтрифосфат. Тіамінпірофосфат є коферментом піруватдекарбоксилази, яка каталізує окислювальне декарбоксилування піровиноградної і інших a-кетокислот:

Однією з основних хімічних реакцій, в яких бере участь тіамінпірофосфат, є декарбоксилування піровиноградної кислоти – кінцевого продукту анаеробного розпаду вуглеводів. Під впливом піруватдекарбоксилази відбувається декарбоксилування піровиноградної кислоти з утворенням ацетил-KoA. Якщо в організмі недостатня кількість тіаміну, то фермент не синтезується, в тканинах нагромаджується піровиноградна кислота, виникає явище ацидозу, при якому руйнуються клітини, перш за все, нервової системи. Це призводить до розвитку в організмі ряду патологічних порушень, які характерні для гіпо- і авітамінозів B1. Крім того, тіамінпірофосфат входить до складу понад 30 ферментів, що належать до різних класів. Зокрема, він входить до складу молекули 2-оксоглутаратдегідрогенази, яка каталізує окислювальне декарбоксилування a-кетоглутарової кислоти до янтарної. Є складовою частиною транскетолази, що здійснює перенесення двовуглецевого залишку (активного гліколевого альдегіду) від ксилулозо-5-фосфата на рибозо-5-фосфат.

Тіамін прискорює реакцію дегідрування янтарної кислоти, оберігає вітамін С від окислення, забезпечує стабільність концентрації вітаміну B6 в тканинах, сприяє біосинтезу нуклеїнових кислот, білків, глюкози, глікогену і жирів у різних тканинах організму.

Антивітаміни. Антивітаміни діляться на дві групи – структурні аналоги тіаміну і тіамінази. Структурні аналоги можуть входити до складу молекул карбоксилази, витісняти з них тіамін, викликаючи гальмування їх дії.

До них відносяться такі речовини:

Тіамінази здатні розщеплювати молекулу тіаміну на дві неактивні частини: піримідинову і тіазольну.

Застосування вітаміну B1. Препарати вітаміну (тіамінбромід або тіамінхлорид) і раціон, багатий тіаміном, застосовують при лікуванні поліневритів і невритів, неврозів, стенокардії, нефриту, опіків, ахілії та ін.

Вітамін B2. Вітамін B2 (рибофлавін) вперше був виділений із сироватки молока і названий лактофлавіном. Він входить до складу „жовтого дихального ферменту”.

Гіпо- і авітамінози. Ранніми ознаками арибофлавінозу є характерні ураження слизових оболонок губ, ротової порожнини, внутрішніх органів. Досить типовим є своєрідний глосит – з’являються виразки в ротовій порожнині, запалений язик стає пурпурно-червоним, шорстким, грибовидні сосочки ущільнюються, з’являються тріщини. Виникають себорейні дерматити та екземи (особливо в області очних ямок, вух і грудей), порушується нормальне відтворення кишкового епітелію, що призводить до виразок слизової оболонки харчового каналу, знижується загальна стійкість організму проти інфекцій, сповільнюються процеси регенерації.

Досить характерним є ураження органів зору – васкуляризується рогівка, в ній розвивається помутніння, виникають кон’юнктивіти і кератити, анемія, з’являється світлобоязнь. Спостерігаються також зміни з боку нервової системи – апатія, головний біль, парестезії, почуття жару в ступнях ніг. Спостерігається м’язова слабкість, зниження температури тіла, падає пульс, зниження працездатності, особливо здатності до розумової праці.

Першою ознакою гіповітамінозу у тварин є затримка росту, зменшення приросту, надмірна витрата кормів, висока смертність. У ссавців на спині випадає шерсть. У птахів, крім того, розвивається різко виражена слабкість ніг, опухання суглоба п’яти, викривлення і скручування пальців по типу „кулака”. Авітаміноз викликає високу смертність ембріонів (свиней і птахів).

Хімічна будова і властивості. Вітамін B2 – похідне гетероцикла ізоалоксазина і спирту рибітола:

Вітамін B2 – кристалічна речовина жовто-оранжевого кольору зі специфічним запахом, гірка на смак, розчиняється у воді, не розчиняється в органічних розчинниках, водні розчини флуоресціюють, стійка до нагрівання (до 120°C) і розкладається при ультрафіолетовому опромінюванні.

Природні джерела і потреба. Джерелами вітаміну є продукти тваринного, рослинного і бактерійного походження. Організм тварин не може синтезувати рибофлавін. Деяку кількість рибофлавіну організм (наприклад, коні, рогата худоба) одержує в результаті його синтезу мікроорганізмами харчового каналу. Значна кількість його міститься в сироватці молока (2 мг на 100 г), сирові (4,6 – 6,02 мг на 100 г), пивних і пекарних дріжджах (4,0 – 8,0 мг на 100 г) овочах і фруктах (0,01 – 0,08 мг на 100 г).

Добова потреба у вітаміні B2 для дорослої людини становить 2,5 – 3,5 мг на добу і від 1 до 3 мг для дітей, для телят складає 4 – 8 мг, ягнят – 1,5, свиней – 2 – 4, курчат – 2,5 – 3 мг/кг корму.

Обмін вітаміну B2 в організмі. Рибофлавін в організм поступає з їжею у вільному і зв’язаному стані. До 50% рибофлавіну зв’язано з білками. Під впливом протеолітичних ферментів і соляної кислоти зв’язана форма вітаміну розщеплюється до білка і рибофлавіну. Рибофлавін всмоктується в тонкій кишці. Після всмоктування він фосфорилується в слизовій оболонці кишок, тканинах печінки, нирок і інших органів, оскільки вітамінними властивостями володіє не вільна, а фосфорильована форма вітаміну В2:

Під впливом специфічних ферментів фосфорильована форма перетворюється на моно- і динуклеотиди. При цьому утворюється два коферменти: флавінмононуклеотид (ФМН) і флавінаденіндинуклеотид (ФАД):

Рибофлавін + АТФ  ФМН + АДФ;

ФМН + АТФ  ФАД + Пірофосфат.

Більшість флавінових ферментів (ФФ) містять ФАД:

У молекулах багатьох флавінових ферментів містяться метали, які виконують, мабуть, функції фіксатора семіхінонових форм рибофлавіну, що бере участь в перенесенні електронів і протонів в дихальному ланцюзі.

Надлишок вітаміну і продукти його розпаду виділяється з сечею, калом і потом.

Значення вітаміну B2 для обміну речовин. Рибофлавін – складова частина більш ніж 60 флавінових ферментів, які беруть участь у клітинному диханні й інших реакціях обміну речовин. Частина ферментів – НАД∙Н2-цитохром-с-редуктаза і НАДФ∙Н2-цитохром-с-редуктаза – є акцепторами водню і його переносниками.

Здатність флавінових ферментів бути переносником водню пояснюється наявністю в ядрі ізоалоксазина в 1-му і 10-му положеннях подвійних зв’язків, по місцю розриву яких і приєднується водень:

де R – залишок нуклеотида і білок-носій. Після приєднання водню ФФ стає безбарвним. Обмін рибофлавіну тісно пов’язаний з обміном білків, нуклеїнових кислот, вуглеводів, ліпідів, з окислювальним фосфорилуванням та ін.

Антивітаміни. Антагоністами рибофлавіну є його структурні аналоги – дихлорриботилізоалоксазин, динітрофеназин, ізорибофлавін та ін.

Застосування вітаміну B2. Рибофлавін і природні джерела, багаті ним, використовуються при лікуванні багатьох захворювань (променевої хвороби, гепатитів, дерматитів, іритів, кератитів) і авітамінозів.

Вітамін B3. Вітамін B3 (пантотенова кислота) іноді називають антидерматичним вітаміном. Вперше виділений із рисових висівок і тканин печінки.

Гіпо- і авітамінози. При недостатній кількості або відсутності вітаміну в раціоні у людини спостерігається слабкість, швидка втомлюваність, парестезії (оніміння) кінцівок, дерматити, схильність до інфекційних захворювань, зниження кислотності шлункового соку. У тварин спостерігається втрата шерсті (у птахів – пір’я), з’являються струпи у очних ямок, у кутках рота, виникають поноси, порушується координація рухів, знижується кров’яний тиск, затримується і зупиняється ріст, зменшується продуктивність і опірність організму до хвороб (гальмується вироблення антитіл), наступає смерть. Авітаміноз характерний для свиней, собак і птахів. Його причиною є одноманітний безвітамінний корм, надмірне використання антибіотиків та ін.

Гіпервітамінози. Пантотенова кислота не токсична і ознак гіпервітамінозів не має.

Хімічна будова і властивості. В утворенні пантотенової кислоти беруть участь a-, g-діоксі-b-диметилмасляна кислота і b-аланін:

Вітамін є маслянистою рідиною ясно-жовтого кольору, добре розчинною у воді, оптично активною, нестійкою до дії кислот або лугів (гідролізується) і до високих температур.

Природні джерела і потреба. Вітамін синтезується всіма рослинами, дріжджовими клітинами, багатьма мікробами, у тому числі і тими, що мешкають в передшлунках жуйних і кишках. Багаті вітаміном кормові дріжджі (20,0 мг на 100 г), печінка (7 мг на 100 г), яйця (6,3 мг на 100 г), внутрішні органи тварин (3 – 4 мг на 100 г), а також рисові висівки, картопля, морква. Добова потреба людини у пантотеновій кислоті становить 7 – 10 мг на добу і повністю задовольняється за рахунок харчових продуктів та синтезу її мікрофлорою кишок. Ягнятам і телятам на добу вимагається 6 – 20 мг вітаміну на голову, свиням – 12 – 15 мг/кг корму, с/г птахам – 2 – 8 мг/кг корму.

Обмін вітаміну B3 в організмі. Вітамін, що міститься в раціоні і синтезований мікрофлорою (головним чином кишковою паличкою), поступає після всмоктування в кровоносне русло і розноситься до всіх органів і тканин, депонується в печінці, частково – в нирках, міокарді і скелетних м’язах. В організмі вітамін в основному зв’язаний з білками (кров) і входить до складу KoA.

Пантотенова кислота і продукти її розпаду виводяться з організму з калом і сечею. Кількість виділеної з організму пантотенової кислоти завжди більша ніж поступила (за рахунок бактерійного синтезу вітаміну).

Значення вітаміну B3 для обміну речовин. Вітамін B3 є складовою частиною KoA, отриманого вперше в чистому вигляді Ф. Липманом (1945 р). KoA складається з трьох частин – залишку тіоламіна (1), залишку пантотенової кислоти (2) і залишку 3¢-фосфоаденозин-5¢-дифосфата (3):

KoA впливає на обмін речовин, бере участь у біосинтезі й окисленні ліпідів, вуглеводів, у функціонуванні циклу трикарбонових кислот, утворенні ацетилхоліну, порфіринів, глюкозаміна, гіпурової кислоти і т.д. KoA функціонує як проміжний акцептор і переносник ацилів, утворюючи відповідні ацил-КоА (ацетил-, бутирил-, сукциніл-, малоніл-КоА). При цьому відбувається їх активація, оскільки залишок карбонової кислоти зв’язується з SH-групою KoA макроергічним ацилтіоефірним зв’язком (–СО~S–KoA). Особливе значення має ацетил-КоА („активна оцтова кислота”). Це головний продукт проміжного обміну ліпідів, вуглеводів і білків. Це основне „паливо” для циклу трикарбонових кислот та сировина для біосинтезу багатьох сполук.

Антивітаміни. Вони найчастіше представлені структурними аналогами вітаміну B3 (пантоїлтаурин, пантоїлпропаноламін, w-метилпантотенова кислота та ін.). Антивітаміни блокують утворення молекул KoA. Сульфопантотенова кислота використовується як бактерицидний препарат.

Застосування вітаміну B3. Пантотенат кальцію використовується при лікуванні поліневритів, екземи, опіків, атонії харчового каналу та ін.

Вітамін В5 (PP). Відкриття вітаміну В5 (нікотинаміду) пов’язано з вивченням природи хвороби пелагри. Хвороба відома з XVIII століття в країнах, де основним продуктом живлення була кукурудза (Іспанія, Італія та ін.). Лише К. Функ в 1914 р. встановив, що причиною хвороби є відсутність якогось вітаміну. Ним виявилася нікотинова кислота і її амід.

Гіпо- і авітамінози. При недостатньому надходженні до організму людини або при білковому голодуванні виникає захворювання, яке дістало назву „пелагра”. Для неї характерними є три групи симптомів: дерматит, діарея і деменція. У зв’язку з чим вона дістала назву хвороби „трьох Д”.

Дерматит виявляється в тому, що шкіра на відкритих ділянках тіла червоніє, стає шорсткою, покривається пухирцями, які лопаються, утворюючи виразки, темно-коричневі плями. Особливо уражаються кисті рук, шия, шкіра обличчя. Зміна шкірного покриву досить характерна для пелагри, однак це спостерігається не у всіх хворих.

Друга група симптомів пелагри – порушення функцій органів травлення (діарея). При цьому спостерігається запалення слизових оболонок ротової порожнини, язик стає червоним, блискучим, з’являються тріщини. В процесі травлення зменшується вміст соляної кислоти в шлунку, виникають поноси, нудота і, як наслідок, виснаження організму.

Третя група симптомів, яка виникає в особливо важких випадках, – розлад діяльності нервової системи, втрата пам’яті, марення, недоумство (деменція). Пелагра може протікати в хронічній рецидивуючій формі протягом кількох років. Загострення хвороби найчастіше спостерігається на початку весни і затухає влітку і восени.

Серед тварин гіпо- і авітамінози найчастіше зустрічаються у поросят, молодих собак, курчат, індичат і качат. Вони розвиваються при недостатній кількості вітаміну, білків і триптофана в кормах, при тривалому годуванні тварин зерном кукурудзи або кукурудзяним силосом, вареною картоплею і недостатній кількості зелених кормів у раціоні. Порушується структура і функції шкіри (вона стає зморшкуватою, потовщеною, утворюються струпи), з’являються розлади з боку харчового каналу (понос), нервово-м’язового апарату (судоми), погіршується апетит, сповільнюється і зупиняється ріст і різко знижується рівень продуктивності. Виникають атрофічні явища в тканинах шкіри, м’язів, кісток, печінки, залоз внутрішньої секреції, кишок (на слизовій оболонці сліпої і ободової кишок з’являється сирний наліт), розвивається анемія. У собак слизова оболонка язика темніє („чорний язик”). У свиней з’являються дерматити на вухах, у птахів уражаються суглоби, знижується продуктивність, наступає масова загибель, особливо молодняка.

Гіпервітамінози. Виявляються при надлишку в організмі вітаміну В5. Призводять до ушкодження нервової системи і епітеліальних покривів.

Хімічна будова і властивості. Вітамін PP представлений двома хімічними сполуками – нікотиновою кислотою та її амідом. Нікотинова кислота в організмі легко перетворюється на амід за участю АТФ:

        

Їх хімічна назва – 3-піридинкарбонова кислота і нікотинамід. Нікотинова кислота і її амід – кристалічні безбарвні речовини, розчиняються у воді і етанолі, стійкі до високих температур.

Природні джерела і потреба. Вітамін широко поширений у природі, частково синтезується мікрофлорою харчового каналу за наявності в раціоні достатньої кількості триптофана. Багаті вітаміном дріжджі (28 – 112 мг на 100 г), печінка (22 мг на 100 г), м’ясо (2,7 – 6,8 мг на 100 г), гречка (4,4 мг на 100 г). Невелика кількість міститься у пшеничних висівках, рибному і м’ясокістковому борошні, зерні вівса і гороху, сіні конюшини і люцерни.

Потреба дорослої людини у вітаміні В5 становить 15 – 25 мг на добу для дітей – 5 – 15 мг на добу залежно від віку.

Потреба тварин у вітаміні різна. Коням рекомендується давати 0,1 мг вітаміну на 1 кг сухої маси корму, телятам – 0,3 – 0,5, ягнятам – 0,1 – 0,6, свиням – 10, поросятам – 12 – 20, птахам – 8 мг/кг.

Обмін вітаміну В5 в організмі. Всмоктування вітаміну екзо- і ендогенного походження відбувається в тонкій кишці, частково в інших відділах харчового каналу. У всеїдних і м’ясоїдних організмах з нікотинової кислоти в тканинах утворюється нікотинамід, який використовується для біосинтезу ферментів і інших потреб. Вітамін і продукти його розкладання виділяються в основному з сечею, менше – з калом і потом. У жуйних тварин вітамін використовується тканинами у вигляді нікотинової кислоти, а її надлишок виділяється з сечею у вільному або зв’язаному стані.

Значення вітаміну В5 для обміну речовин. Нікотинамід є складовою частиною багатьох ферментів, що беруть участь в процесах біологічного окислення. В молекулу ферментів входить у вигляді коферментів – нікотинамідаденіндинуклеотида (НАД) і нікотинамідаденіндинуклеотидфосфата (НАДФ). Молекула НАД містить залишок аденіна, амід нікотинової кислоти, два залишки рибози і два залишки фосфорної кислоти:

НАДФ відрізняється від НАД наявністю в положенні 2¢ рибози залишку фосфорної кислоти.

У більшості хімічних реакцій НАД або НАДФ як коферменти приєднують протон і два електрони від субстрата, що окислюється, і передають їх іншим переносникам дихального ланцюга або транспортують від відновленого кофермента до субстрата. Окислені форми коферментів позначаються НАД і НАДФ, відновлені – НАД∙H2 і НАДФ∙H2. Проте, коли бажано підкреслити утворення водневого іона при відновленні кофермента, застосовують позначення НАД∙Н+H+ і НАДФ∙Н+Н+. При використанні цього способу позначення окислену форму обов’язково слід писати так: НАД+ і НАДФ+.

У тканинах міститься в 5 – 10 разів більше НАД, ніж НАДФ. НАД – складова частина багатьох ферментів гліколізу, циклу трикарбонових кислот, b-окислення жирних кислот та ін. До ферментів, що містять НАДФ, відносяться дегідрогеназа ізолимонної кислоти, дегідрогенази глюкозо-6-фосфата і 6-фосфоглюконової кислоти та ін. Відновлені форми НАД і НАДФ є донаторами водню для різних синтезів в клітинах і тканинах. НАД і НАДФ неміцно зв’язані з білками дегідрогеназ, тому вони легко здійснюють функції переносника.

Під впливом нікотинової кислоти відбуваються значні зміни показників білкового обміну. Зокрема, при недостатній кількості вітаміну В5 на фоні зниження загальної кількості білків зменшується вміст альбумінів з одночасним збільшенням глобулінових фракцій.

Загальновизнаною є також нормалізуюча дія вітаміну В5 на вміст холестерину, водно-мінеральний обмін, функціонування нервової і серцево-судинної систем.

Антивітаміни. Існує декілька антивітамінів. Особливе місце серед них займають:

                   

Застосування вітаміну В5. Застосовується з профілактичною і лікувальною метою. Нікотинамід застосовують при лікуванні пелагри у людини, свиней, собак і птахів, ахіліях шлунку (відсутність соляної кислоти в шлунковому соку), гепатитах, нефриті та ін.

Вітамін В6. Вітамін B6 (піридоксин) об’єднує три сполуки: піридоксин, піридоксаль і піридоксамін. Відкриття вітаміну було пов’язано із з’ясуванням причин „щурячої пелагри” – захворювання, яке не виліковувалося після додавання в корм вітаміну PP. Вітамін B6 був виділений з дріжджів і рисових висівок.

Гіпо- і авітамінози. Спостерігаються найчастіше у тварин з однокамерним шлунком – свиней, собак, курей, голубів і лабораторних ссавців (щурів, мишей). При цьому виникають дерматити, з’являються епілептичні судоми, гальмується діяльність червоного кісткового мозку, затримується і припиняється ріст і розвиток. У свиней і собак переважає ушкодження нервової системи. У свиней в крові вміст гемоглобіну зменшується на 30%, вміст заліза збільшується в 6 разів (до 600 мкг на 100 г). У щурів виникає симетричний дерматит (акроденія) із враженням кінцівок, кінчиків вух і носа. У курчат підвищується збудливість, вони починають вищипувати і поїдати власне пір’я, у дорослих птахів з’являються пухлини м’язового шлунку, судоми.

Гіпервітамінози. Вітамін В6 не токсичний, інколи може спостерігатися побічна дія (диспепсичні явища).

Хімічна будова і властивості. Під терміном вітамін B6 розуміють три близькі речовини – похідні піридину, які можуть взаємно перетворюватися одна в одну:

Піридоксин – кристалічна речовина білого кольору, добре розчиняється у воді і етанолі, температура плавлення 160°C, стійка до дії кислот, лугів і до нагрівання, руйнується під впливом ультрафіолетового проміння, розчин флуоресціює.

Природні джерела і потреба. Вітамін в основному поступає в організм з їжею. Деяка кількість піридоксина синтезується мікрофлорою харчового каналу. Вітаміном багаті риба, жовток яйця, дріжджі, пшеничні і рисові висівки, зелені частини рослин, соняшниковий шрот (11,2 мг/кг сухої речовини).

Добова потреба людини в піридоксині орієнтовно становить 1,5 – 2 мг. Така кількість вітаміну може бути забезпечена бактеріальним синтезом. Потреба тварин у вітаміні вивчена мало. В раціон свиней рекомендується додавати 1 мг вітаміну на 1 кг корму, курчат і індичат – 3, качат і гусят –2,6, племінних курей і качок – 4,5 мг/кг.

Обмін вітаміну B6 в організмі. В основному вітамін поступає в організм у складі продуктів харчування. Частина вітаміну, зв’язана з білками, всмоктується слизовою оболонкою харчового каналу після ферментативного гідролізу білків. З током крові вітамін поступає в печінку, а потім до інших органів, де використовується для біосинтезу піридоксалевих ферментів та інших цілей. Вільний вітамін фосфорилується під впливом ферменту піридоксалькінази, утворюючи фосфати:

     

З організму вітамін виводиться в основному з сечею. З метаболітів піридоксина, що виявляються в сечі, 4-піридоксилова кислота складає 20 – 40%.

Значення вітаміну B6 для обміну речовин. Вітамін у вигляді фосфатів входить до складу ферментів, що беруть участь в дезамінуванні, переамінуванні і декарбоксилуванні амінокислот (три, мет, цис), в перенесенні сірки з метіоніна на серин, в утворенні адреналіну і норадреналіну, серотоніна і гістаміну. Вітамін як кофермент входить до складу молекул багатьох рацемаз, бере участь в обміні триптофана і тирозина та ін. Піридоксаль-5-фосфат бере участь у створенні третинної структури фосфорилази.

Значення вітаміну B6 в структурі і діяльності піридоксалевих ферментів детально було розшифровано на прикладі реакцій переамінування. На першій стадії амінокислота взаємодіє з піридоксальфосфатом, утворюючи ізометини I і II (Шиффові основи). В їх молекулі відбувається зсув електронів по напряму від a-вуглецевого атома амінокислоти до атома азоту піридоксальфосфата, що призводить до поляризації і розриву зв’язків біля a-вуглецевого атома амінокислоти. Обидві початкові речовини після взаємодії утворюють азометин I, який перетворюється в азометин II. Азометин II гідролізується, утворюється кетокислота (III) і піридоксамінофосфат (IV), який може віддавати свою аміногрупу відповідній кетокислоті. В результаті синтезується потрібна амінокислота і відновлюється в колишньому вигляді вітамін:

Антивітаміни. Антивітамінами піридоксина є 4-дезоксипіридоксин (2,4-диметил-3-оксі-5-оксіметилпіридин), 2-метил-3-аміно-4,5-оксіметилпіридин та ін.:

         

Застосування вітаміну B6. Препарат вітаміну B6 піридоксин гідрохлорид застосовується при лікуванні гепатитів, дерматитів, екземи, нефриту, невритів та інших хвороб.

Вітамін Bc. Вітамін Вс (фолієва кислота) вперше був виділений з листя шпинату. Широко поширений в рослинному світі. Його називають також птероїлглутаміновою кислотою.

Гіпо- і авітамінози. При недостатній кількості фолієвої кислоти порушуються кровотворні процеси, насамперед, еритро-, лейко- і тромбопоез. Виникають розлади функції кишок, спостерігаються зміни слизових оболонок ротової порожнини (стоматит, глосит, гінгівіт). Характерною ознакою дефіциту фолієвої кислоти є розвиток різних видів анемій – макроцитарної (тропічної), спру та анемії Аддісон-Бірмера. Останній вид виникає в результаті відсутності ферментів, які перетворюють зв’язану фолієву кислоту у вільну. Авітамінози найчастіше виникають при порушенні процесів всмоктування в тонкій кишці.

Хімічна будова і властивості. Молекула вітаміну складається з трьох компонентів: похідного птеридина (I), n-амінобензойної (II) і глутамінової (III) кислот:

Залежно від кількості залишків глутамінової кислоти, що входять до молекули вітаміну, розрізняють моно-, три- і гептапохідні: птероїлмоно-, птероїлтри- і птероїлгептаглутамінові кислоти.

У харчових продуктах фолієва кислота перебуває у зв’язаному неактивному стані. Перетворення її в біологічно активну форму проходить у процесі перетравлювання їжі під впливом специфічних ферментів панкреатичного соку. Внаслідок дії ферментів проходить відновлення фолієвої кислоти чотирма атомами водню, в результаті чого утворюється тетрагідрофолієва, або фолінова, кислота, активна форма фолієвої кислоти, яка дістала назву цитроворум-фактор:

Цитроворум-фактор у 100 разів активніший за фолієву кислоту. Вважають, що його утворення стимулюється вітаміном В12 і аскорбіновою кислотою.

Фолієва кислота – жовта кристалічна речовина, погано розчинна у воді і легко розчинна в лугах. При нагріванні до 250°C розкладається. Без смаку і запаху. Під впливом сонячного світла (особливо за наявності рибофлавіну) гідролізується по метиленовому містку на птеридин і n-амінобензоїлглутамінову кислоту.

Природні джерела і потреба. Вітамін синтезується в листі рослин, клітинах дріжджів і мікрофлорою харчового каналу. Ним багаті пивні дріжджі (11,35 мг/кг), печінка, люцернова мука, соєвий шрот, картопля.

Людина і тварини задовольняють потребу у вітаміні за рахунок бактерійного синтезу. Добова потреба людини становить 0,2 – 0,3 мг, тварин 0,5 – 2,1 мг/кг корму.

Обмін вітаміну Вс в організмі. Вітамін всмоктується в дванадцятипалій кишці у вигляді харчових фолатів. Потім поступає в кровоносне русло, депонується в печінці. З 7–12 мг фолатів організму людини 5–7 мг міститься в печінці. Близько 60% фолатів крові зв’язані з білками сироватки. З організму фолати виводяться з сечею, калом і частково з потом. 25–33% фолатів сечі представлено N5-метилтетрагідрофолатом.

Значення вітаміну Вс для обміну речовин. Фолієва кислота є коферментом багатьох ферментів, що каталізують в основному три типи реакцій – формілування, оксиметилювання і утворення активних метильних груп. Ферменти, що містять відновлену форму вітаміну (тетрагідрофолієву кислоту), активують C1-залишок (–CОН, –CH3, –CH2OH), беруть участь в біосинтезі амінокислот (метіоніна, серина, гістидина), структурних компонентів нуклеїнових кислот (аденіна, гуаніна, тиміна) і біосинтезі білків, холіна, утворенні ферментних систем, що містять НАД і ФАД, а разом з вітаміном B12 – в процесах кровотворення.

Є також дані, що дефіцит фолієвої кислоти призводить до порушення утилізації організмом вітаміну В12.

Антивітаміни. Існує ряд антагоністів вітаміну. Найбільший інтерес представляють аміноптерин і аметоптерин – конкуруючі інгібітори біосинтезу пуринових і піримідинових основ в тканинах злоякісних пухлин:

Механізм їх дії пов’язаний з блокуванням включення метильного залишку в піримідинове ядро тиміна. В ракових клітинах не синтезується ДНК, зменшується здатність до біосинтезу АТФ і білка.

Застосування вітаміну Вс. Вітамін застосовується при лікуванні макроцитарних анемій, хронічних гастроентеритів, туберкульозу кишечника та ін.

Вітамін B12. Вітамін В12 (ціанкобаламін) назвали антианемічним, оскільки він оберігає організм від злоякісної анемії. В 1929 р. було встановлено, що хвороба виникає в результаті відсутності в організмі двох чинників – зовнішнього і внутрішнього. В 1948 р. з тканин печінки був виділений перший з них, його назвали вітаміном B12, або кобаламіном. Другий чинник – мукопротеїн – міститься в шлунковому соку.

Гіпо- і авітамінози. Недостатня кількість вітаміну В12 в організмі призводить до порушення кровотворення в червоному кістковому мозку. Виникає мегалобластичний тип кровотворення, розвивається анемія Аддісон-Бірмера. У тварин при цьому затримується ріст, різко зменшується приріст, продуктивність, виникає понос, блювота, підвищена сприйнятливість до захворювань, висока ембріональна смертність, парез і параліч кінцівок. В кровоносній системі з’являються незрілі і дуже великі еритроцити, в шлунку атрофується слизова оболонка, уражається нервова система.

Причиною цих явищ є недостатня кількість або відсутність в кормах вітаміну, шлунково-кишкові захворювання, при яких порушується асиміляція кормового вітаміну, його всмоктування і біосинтез, мікробами.

Гіпервітамінози. Вітамін В12 не токсичний і ознак гіпервітамінозів не проявляє.

Хімічна будова і властивості. Вітаміну B12 – досить складна органічна сполука:

Це єдиний металовмісний вітамін, до складу якого входить кобальт. Молекула вітаміну В12 складається з двох частин – кобальтвмісної, коринопорфіриноподібної, або хромофорної, і нуклеотидної. В центрі хромофорної частини знаходиться атом кобальту, одна валентність якого насичена ціаногрупою, а друга – сполучена з атомом азоту пірольного ядра. Атоми азоту інших трьох пірольних кілець (B, C, D) зв’язані з кобальтом координаційними зв’язками. Ядра пірола містять вісім метильних груп, три залишки пропіонової кислоти і три залишки оцтової кислоти. Карбоксильні групи амідовані. Нуклеотидна частина вітаміну утворена 5,6-диметилбензімідазолом, залишком рибози і фосфорної кислоти. Вона зв’язана ковалентно з хромофорною частиною (через ядро D) і координаційно – з атомом кобальту.

У молекулі вітаміну В12 негативний заряд фосфорної кислоти компенсується позитивним зарядом атома кобальту. Вважають, що специфічні властивості вітаміну В12 визначаються хромофорною частиною його молекули, і навіть незначні структурні зміни її призводять до втрати вітамінної активності або надають йому антивітамінних властивостей. Відомі аналоги вітаміну В12, які утворюються при заміні ціаногрупи іншим угрупованням. Так, при заміні його на гідроксогрупу утворюється гідроксокобаламін, на нітрогрупу – нітрокобаламін. Аналоги вітаміну В12, в яких ціаногрупа заміщена аденозином, виконують роль кобаламідних коферментів. Відомо також близько 100 аналогів вітаміну В12, які відрізняються структурою нуклеотидною частини молекули.

Вітамін B12 – кристалічна речовина, рубіново-червоного кольору, добре розчиняється у воді, етанолі, не розчиняється в бензолі, хлороформі і діетиловому ефірі, без запаху і смаку, руйнується під дією сонячного світла і високих температур, окислювачів і відновників.

Природні джерела і потреба. За наявності достатньої кількості кобальту в раціоні вітамін частково синтезується мікробами (особливо пропіоновокислими бактеріями і актиноміцетами), харчового каналу. Багато вітаміну містять продукти тваринного походження печінка (50 мг на 100 г), нирки (50 мг на 100 г). Рослини і тканини тварин не здатні синтезувати вітамін.

У промислових масштабах вітамін В12 добувають з культуральної рідини і міцелію актиноміцетів – відходів виробництва антибіотиків (біоміцину, стрептоміцину). Для стимуляції синтезу вітаміну В12 до середовища додають кобальт.

Добова потреба людини у вітаміні В12 становить 0,8 – 0,1 мг. Потреба тварин у вітаміні B12 різна. Так, для поросят середня добова потреба у вітаміні складає 20 мкг на 1 кг сухого корму, телят – 10–40, дорослих свиней – 11, місячних курчат – 20, курей – 2 мкг/кг.

Обмін вітаміну B12 в організмі. Вітамін всмоктується в нижній частині тонкої і верхній частині клубової кишок. Перед всмоктуванням вітамін з’єднується з внутрішнім чинником, утворюючи комплекс. Унаслідок активного перенесення цей комплекс поступає в ендоплазму епітеліальних клітин кишок. Надалі він розщеплюється на вітамін В12 і внутрішній чинник. Перший поступає в кровоносну систему ворсинки, другий повертається назад, де взаємодіє з новими порціями вітаміну.

Вважають, що в розвитку перниціозної анемії відіграють важливу роль як внутрішні, так і зовнішні фактори. Вітамін В12 вважається зовнішнім, антианемічним фактором (фактором Кастла), оскільки засвоєння його залежить від функціонального стану органів травлення і наявності в травних соках внутрішнього антианемічного фактора (внутрішнього фактора Кастла).

Внутрішній фактор Кастла виділяється клітинами дна шлунка. Це речовина білкової природи – гастромукопротеїд, який дістав назву апоеритину. Апоеритин утворює комплекс з кобаламіном і таким чином захищає його від мікроорганізмів кишок, які можуть захоплювати і використовувати вітамін В12 для своїх потреб. Встановлено, що для засвоєння 1,5 мг вітаміну В12 необхідно 80 мг апоеритину. Комплекс вітаміну B12 з апоеритином у кишках зв’язується зі спеціальними акцепторами, які транспортують його в капілярні судини, де він взаємодіє зі специфічними білками плазми – транскобаламіном I (відноситься до a-глобулінів) і транскобаламіном II (має b-глобулінову природу). У такому вигляді вітамін транспортується спочатку в печінку (частина його там депонується та може зберігатися протягом 2 – 3 міс.), а потім до інших органів і тканин, де використовується для біосинтезу багатьох ферментів, до складу молекул яких він входить як кофермент, а також для інших потреб.

У хворих на анемію Аддісон-Бірмера вітамін В12 засвоюється лише при парентеральному введенні, коли він потрапляє безпосередньо в кров, або при одночасному пероральному введенні вітаміну В12 та апоеритину. Це пояснюється тим, що в шлунковому сокові хворих апоеритин відсутній, тому навіть при введенні вітаміну В12 перорально він захоплюється мікрофлорою кишок, яка використовує його для свого росту.

Вважають, що функція апоеритииу полягає не лише в збереженні вітаміну В12 від захоплення мікрофлорою верхньої частини кишок, для яких він є життєво необхідним, а й в забезпеченні всмоктування його епітеліальними клітинами кишок. Крім того, припускають, що внутрішній фактор виділяє вітамін В12 із його зв’язаних форм у продуктах харчування.

В організмі вітамін мало змінюється, його надлишок виділяється з сечею і калом.

Значення вітаміну B12 для обміну речовин. Вітамін B12 впливає на обмін речовин – біосинтез нуклеїнових кислот, білків, перетворення вуглеводів, сприяє накопиченню жиру, відновленню SH-груп KoA, активує каротиназу і забезпечує утворення в організмі вітаміну А з каротинів, утворення макроергів, сприяє ресинтезу метіоніна, утворенню адреналіну і норадреналіну, креатину й інших біологічно важливих сполук. Метилкобаламін бере участь в біосинтезі метіоніна, оцтової кислоти і метану. 5'-Дезоксиаденозильне похідне вітаміну служить коферментом ферментів, за допомогою яких відбувається перетворення глутамінової кислоти в аспарагінову і ферментів, що каталізують утворення дезоксицитидин-5-дифосфата з цитидин-5-трифосфата та ін.

Вплив вітаміну В12 на еритропоез тісно пов’язаний з іншими вітамінами групи В, зокрема з фолієвою кислотою. Він сприяє перетворенню фолієвої кислоти на фолінову – активну форму, яка забезпечує процеси гемопоезу. При відсутності фолієвої кислоти вітамін В12 не виявляє гемопоетичного ефекту. Однак роль вітаміну ВІ2 не обмежується лише участю його в кровотворних процесах.

Позитивно впливає вітамін В12 також на функціональний стан багатьох залоз внутрішньої секреції – нормалізує гіперглікемічну криву, виявляє позитивний вплив при тиреотоксикозах. Встановлено, що вітамін В12 стимулює відновні процеси при різних травмах, пошкодженнях периферичної нервової системи, спинного мозку, серцево-судинних захворюваннях.

Антивітаміни вивчені недостатньо.

Застосування вітаміну В12. Вітамін застосовують при лікуванні анемій, гепатитів, хірургічних втручаннях, хворобах нервової системи, в онкологічній практиці і т.д.

Вітамін H. Вітамін H (біотин) відомий з кінця минулого століття як чинник росту бактерій і дріжджів.

Гіпо- і авітамінози. При недостатній кількості або відсутності вітаміну виникають гіпо- і авітамінози, особливо у курчат і індичат, можуть виникати у свиней і хутрових звірів при годуванні їх яєчним білком. До складу яєчного білка входить білок авідин, який інактивує біотин, утворюючи з ним комплексну сполуку. У тварин зменшується апетит, знижується маса, виникає загальна слабкість, з’являється гіперемія шкіри і лусковий дерматит, сальні залози починають активно функціонувати і з’являється себорея (вітамін ще називають антисеборейним), навкруги очей формуються набряклі ободи („окуляри”), набрякають кінцівки, випадає шерсть (у птахів – пір’я). У птахів спостерігається також деформація кісток і висока ембріональна смертність.

Хімічна будова і властивості. Молекулу вітаміну слід розглядати як похідне тіофена, до якого приєднаний залишок сечовини і валеріанової кислоти:

Біотин – кристалічна безбарвна речовина з температурою плавлення 232 – 233°C, добре розчиняється у воді, гірше – в етанолі, стійка до дії сонячного проміння, лугів, кислот, нагрівання. Хімічно активна його –CООH група може взаємодіяти з багатьма сполуками.

Природні джерела і потреба. Біотином багаті пивні дріжджі (1000 – 1600 мкг/кг), печінка (0,1 мг на 100 г), молоко (0,05 мг/л), соя (0,06 мг на 100 г), арахісовий і соєвий шроти, зерно ячменю, вівса і кукурудзи. У людини і тварин частково синтезується мікрофлорою кишок.

Середня добова потреба в біотині для людини складає 10 мкг, курчат складає 100 мкг/кг корму, індичат – 250, курей – 150, поросят масою до 20 кг – 80 мкг/кг корму.

Обмін вітаміну H в організмі. Екзогенний біотин в основному знаходиться у зв’язаному з білками стані. Зв’язаний біотин гідролізується ферментом біогінідазою до біотину і білка. Всмоктування екзогенного і синтезованого мікрофлорою біотину відбувається в краніальній ділянці тонкої кишки. У крові біотин зв’язується з сироватковими альбумінами і у такому вигляді поступає до різних органів і тканин. Депонується в тканинах печінки, нирок і наднирників. Надлишок вітаміну виводиться з організму з сечею і частково з калом.

Значення вітаміну H для обміну речовин. Біотин є складовою частиною багатьох ферментів, що беруть участь в біосинтезі білків (наприклад, сироваткового альбуміну і амілази), карбоксилуванні і декарбоксилуванні жирних кислот, утворенні багатьох видів ліпідів і пуринів, перетвореннях пірувата в оксалоацетат, пропіоната – в 2-метилмалоніл-КоА (реакція особливо важлива для жуйних), в синтезі сечовини та ін. Найбільш детально вивчено участь біотину в біосинтезі вищих жирних кислот.

Антивітаміни. Основними антагоністами біотину є білок авідин курячого білка і декілька структурних аналогів.

Застосування вітаміну H. Препарати біотину застосовуються при лікуванні дерматитів, екземи, деяких видів анемій.

Вітамін С. Відкриття вітаміну С (аскорбінової кислоти) пов’язано із з’ясуванням природи цинги – захворювання, викликаного відсутністю в раціоні свіжих овочів і фруктів. А. Сент-Дьєрдьї в 1927–1928 рр. отримав речовину з кори наднирників, соку апельсину і капусти. Згодом вона була названа „аскорбіновою кислотою”.

Гіпо- і авітамінози. Вітамін С відіграє в організмі надзвичайно важливу роль. Оскільки він в організмі людини не синтезується, то необхідне постійне надходження його з продуктами харчування.

При нестачі або тривалій відсутності вітаміну С виникають гіпо- та авітамінози. Розвиваються вони найчастіше в зимовий або ранній весняний період, коли вміст вітаміну в харчових продуктах значно знижується. Тривала відсутність вітаміну протягом 3 – 5 міс. призводить до розвитку захворювання, що дістало назву цинги, або скорбуту. Явно вираженій формі захворювання передує прихований період з непомітними симптомами, які можуть тривати кілька місяців. Це загальне нездужання, головний біль, постійне відчуття втоми, млявість, порушення сну, апатія, біль у різних ділянках тіла, особливо в м’язах нижніх кінцівок.

Найхарактернішою ознакою цинги є ураження кровоносних судин, особливо капілярів, яке супроводжується ламкістю їх стінок і підвищенням проникності. Зміни в капілярах призводять до виникнення підшкірних точкових крововиливів (петехій). Спостерігаються також зміни в кістковій та інших мезенхімальних тканинах (хрящах, сухожиллях, дентині зубів), що зумовлено значним зменшенням вмісту колагену. Спостерігається ураження ясен – гінгівіт, що призводить до їх розрихлення, оголення і розхитування зубів, кровоточивості ясен.

Усі ці зміни виникають внаслідок порушення синтезу основної міжклітинної речовини сполучної тканини, яка за нормальних умов цементує ендотеліальні клітини. При захворюванні на цингу порушується також діяльність серцево-судинної системи – спостерігаються прискорене серцебиття, болі в області серця, зниження артеріального тиску.

Зміни з боку травного каналу характеризуються катаральним станом слизової оболонки шлунку і кишок, змінюються секреторна і моторна функції шлунку, виникає дискінезія кишок.

При авітамінозі у тварин спостерігаються кровоточивість ясен, слизових оболонок і м'язів. У телят спостерігаються явища некрозу, у дорослої великої рогатої худоби – швидка стомлюваність, анемія, прискорення пульсу і дихання, у корів в молоці з’являється кров. У молодняка поросят виникає анемія, сповільнюється ріст, з’являються крововиливи шкіри і слизових оболонок, гіперкератоз, кон’юнктивіти, іноді – виникає некроз хвоста, випадає щетина. У дорослих свиней виникають геморагії і з’являється плямисте почервоніння на слизовій оболонці рота, особливо ясен, некротичний стоматит, опухають суглоби, наступає різке виснаження і смерть. У хутрових звірів виникають підшкірні крововиливи, стоматити, анемія, набряки лапок і хвоста (кінчик хвоста іноді відпадає), парези і паралічі, що приводять до загибелі, особливо молодняка. У лисенят хутро стає ватоподібним, сірувато-білим і м’яким.

Хімічна будова і властивості. Вітамін С – похідне L-гулонової кислоти (2,3-ендіол-L-гулоно-1,4-лактон):

Встановлено, що антискорбутні властивості аскорбінової кислоти обумовлені наявністю в складі її молекули лактонового циклу. В дослідах з використанням 14С-аскорбату було виявлено досить виражені редукуючі властивості аскорбінової кислоти. Причому здатність окислюватись і відновлюватись за рахунок інших сполук пов’язана з наявністю в її складі діенольного угрупування. Окислення аскорбінової кислоти може здійснюватися як ферментативно (аскорбіноксидаза), так і неферментативно (кисень повітря, іони Cu2+, Fe2+).

Першим продуктом оксислення аскорбінової кислоти є дегідроаскорбінова кислота (2,3-дикетогулонолактон). Дегідроаскорбінова кислота залежно від умов може легко відновлюватися в аскорбінову кислоту або ж піддаватися подальшому окисленню, внаслідок чого вона перетворюється на дикетогулонову кислоту. Остання при наступному окисленні перетворюється на L-треонову і щавлеву кислоти, які видаляються з організму через нирки. Розщеплення дегідроаскорбінової кислоти проходить спонтанно без участі ферментів.

Дегідроаскорбінова кислота за вітамінними властивостями рівноцінна аскорбіновій, однак вона менш стійка і дуже легко окислюється з утворенням продуктів, які не мають вітамінних властивостей.

Вітамін С – біла кристалічна речовина з кислим смаком, добре розчиняється у воді, гірше – в етанолі, не розчиняється в жирах і діетиловому ефірі, оптично активна, температура плавлення » 190 – 192°C. Вітамін С має сильні відновні властивості: відновлює нітрат срібла, Фелінгову рідину. При нагріванні швидко розкладається.

Природні джерела і потреба. Головними джерелами є зелені частини рослин, овочі і фрукти. В плодах шипшини міститься (2000 – 4500 мг на 100 г), в чорній смородині – (300 мг на 100 г), червоному перці (100 – 400 мг на 100 г), хвої ялини і сосни (взимку) (220 – 275 мг на 100 г), капусті (30 – 70 мг на 100 г). З продуктів тваринного походження вітаміну С найбільше міститься в печінці (32 мг на 100 г), молоці (14 мг на 100 г).

Добувають аскорбінову кислоту в основному синтезом з глюкози та її похідного – спирту сорбіту. Важливе значення має також мікробіологічний синтез із застосуванням оцтовокислих бактерій. Виділення аскорбінової кислоти з природних джерел (шипшини, болгарського перцю, зелених грецьких горіхів) має другорядне значення.

Добова потреба дорослої людини у вітаміні С становить 50 – 70 мг.

Обмін вітаміну С в організмі. Вітамін всмоктується в основному в тонкій кишці. Всмоктування відбувається швидко. З потоком крові поступає в печінку, а потім до інших органів і тканин. Найбільше вітаміну міститься в тканинах наднирників. Засвоєння екзогенного вітаміну порушується при шлунково-кишкових захворюваннях, а біосинтез його в організмі (морські свинки) зменшується при хворобах наднирників, гепатитах, нефриті. Аскорбінова кислота поступає в клітини у вигляді дегідроаскорбінової кислоти. В клітинах (наприклад, в еритроцитах) дегідроаскорбінова кислота швидко відновлюється. Основна маса вітаміну зв’язана, переважно з білками, у комплексі Гольджі і мітохондріях. При окисленні аскорбінова кислота перетворюється в дегідроаскорбінову, дегідроаскорбінова – в дикетогулонову кислоту, а при розпаді дикетогулонової утворюється щавлева кислота:

Частина дикетогулонової кислоти декарбоксилується, що призводить до утворення ксилози, яка використовується для біосинтезу інших пентоз (рибози і дезоксирибози) або глюкози. Деяка кількість аскорбінової кислоти виводиться з організму з сечею.

Значення вітаміну С для обміну речовин. Вітамін бере участь в багатьох реакціях проміжного обміну. Він є донатором і акцептором протонів і електронів. Процес протікає з участю ферментів або іонів металів, хінонів, гомохромогенів. Вітамін бере участь в обміні багатьох сполук:

Вітамін С бере участь у відновленні дисульфідних зв’язків в молекулах білка і, перш за все, ферментів. Є складовою частиною активного центру ферменту, який прискорює гідроліз окремих тіоглікозидів. При недостатній кількості або відсутності в раціоні вітаміну С порушується перехід преколагена в колаген, що призводить до збільшення порозності кровоносних судин і до кровотеч. Порушується біосинтез колагену і гіалуронової кислоти. Виникають типові цинготні зміни скелета. Сповільнюється регенерація всіх тканин, оскільки затримується перетворення проліна в оксипролін. Сповільнюється біосинтез гормонів наднирників, дентину, процесів зсідання крові, гальмується діяльність багатьох ферментів.

Важлива роль вітаміну С у вуглеводному обміні. Позитивно впливає на еритропоез і на утворення гемоглобіну, підвищення реактивності організму та зміцнення його захисних механізмів, сприяє виробленню антитіл, підвищує фагоцитарну активність лейкоцитів, посилюючи опірність організму хворобам. Вітамін С називають ще антиінфекційним вітаміном.

Антивітаміни. Антагоністом вітаміну С є його структурний аналог – глюкоаскорбінова кислота:

Застосування вітаміну С. Вітамін С застосовуються для підвищення опірності організму до захворювань, при лікуванні цинги, анемій, геморагічного діатезу, хірургічних втручаннях, для усунення інтоксикацій різного походження та ін.

Вітамін P. Вітамін P (біофлавоноїди, рутин, катехіни) – група речовин, які зміцнюють стінки капілярів. До них відносяться сполуки, що обумовлюють забарвлення рослин, – флавонони. Вітамін був відкритий А. Сент-Дьєрдьї як чинник стійкості капілярів. До вітаміну P віднесений рутин, близький за властивостями до флавононів.

Гіпо- і авітамінози. При недостатній кількості або відсутності вітаміну в раціоні людини та тварин з’являються крововиливи на шкірі, м’язах, суглобах і внутрішніх органах у вигляді крапок або петехій. Препарат вітаміну С не усуває ці явища. Капіляри стають крихкими і лопаються. Швидко виникає стомлюваність і загальна слабкість, з’являються болі в області суглобів і раптові кровотечі.

Гіпервітамінози. Вітамін Р не токсичний і ознак гіпервітамінозу не проявляє.

Хімічна будова і властивості. Вітамін P об’єднує дві групи речовин – флавонони (еридиктіол, гесперидин, кверцетин і рутин) та катехіни (a-епікатехін):

  

Еридиктіол – безбарвна кристалічна речовина, кристали мають форму листочків, добре розчиняються у воді і етанолі, має температуру плавлення 267°C.

Гесперидин – жовта кристалічна речовина, кристали мають вид листочків, гігроскопічні, слабо розчиняється у воді, краще – в етанолі, має температуру плавлення 224 – 226°C.

Кверцетин – лимонно-жовта кристалічна речовина, кристали голкоподібні, слабо розчиняється в гарячій воді і етанолі, має температуру плавлення 316