Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

Биогеохимическая деятельность микроорганизмов

Работа добавлена на сайт samzan.ru: 2016-03-05


Диплом на заказ

red0;Министерство Образования Российской Федерации

Шадринский государственный педагогический институт

Факультет педагогики и методики начального образования

Кафедра биологии с методикой преподавания

Курсовая работа по методике преподавания биологии

Биогеохимическая деятельность микроорганизмов

Выполнила:

студентка 411 гр.

Усольцева Т.А

Научный руководитель:

Ревякина Г.А

ст. преподаватель кафедры биологии

с методикой преподавания

Шадринск 2004г.


Содержание.

Введение

  1.  Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы и других элементов
  2.  Значение микроорганизмов в геологических процессах
  3.  Условия обитания микроорганизмов в почве и воде
  4.  Использование знаний о биогеохимической деятельности микроорганизмов на уроках биологии

Заключение

Библиографический список


Введение

«Мириады микробов населяют стихии и повсюду окружают нас. Незримо они сопутствуют человеку на всём его жизненном пути, властно вторгаясь в его жизнь то в качестве врагов, то как друзья. В громадном количестве они встречаются в пище, которую мы принимаем, в воде, которую мы пьём, в воздухе которым мы дышим и в почве…» так образно характеризовал микрофлору, которая нас окружает, выдающийся русский микробиолог В.Л. Омелянский. По-видимому, в биосфере нет такой среды, в которой не встречались бы микроорганизмы. Всюду, где есть хотя бы какие-то источники энергии, углерода и азота, обязательно встречаются и микроорганизмы, различающиеся по своим физиологическим свойствам.

Микроорганизмы, несмотря на свою малую величину играют огромную роль в природе и жизни человека. Микробы совершают круговорот веществ, разрушают сложные органические вещества, образующиеся в зелёных растениях, участвуют в процессах самоочищении воды и почвы. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифицирующие, азотфиксирующие, денитрифицирующие и др.

В последнее время микроорганизмы стали шире использоваться в геологии при поисках полезных ископаемых. Сейчас выясняется их роль в разрушении одних и образовании других горных пород.

Все это является примером биогеохимической деятельности микроорганизмов. В результате этой деятельности происходит трансформация элементов в биосфере, что определяется универсальностью ферментативного аппарата микробной клетки, способной перерабатывать любые вещества субстрата.

Изучением проблем биогеохимической деятельности микроорганизмов занимались многие ученые. В 1890 г. С.Н. Виноградский открыл две фазы нитрификации: Nitrosomonas и Nitrobacter, а в 1893 г. он же открыл анаэробную фиксацию азота. В 1901 г. М. Бейеринк открыл аэробную фиксацию азота, в 1902 г. В.Л. Омелянский обнаружил анаэробные целлюлозоразлагающие бактерии. (6, 198)

Все эти открытия позволили расширить представления о биогеохимической деятельности микроорганизмов.

Практическое значение биогеохимической деятельности микроорганизмов в природе и жизни человека послужило основанием для выбора темы: «Биогеохимическая деятельность микроорганизмов».

Цель: изучить особенности и разнообразие биогеохимической деятельности микроорганизмов.

Объект: процессы, происходящие в биосфере в результате деятельности микроорганизмов.

Предмет: биогеохимическая деятельность микроорганизмов.

Задачи:

  1.  Раскрыть значение микроорганизмов в трансформации основных элементов биосферы, а также в процессах разрушения горных пород и создании горючих ископаемых;
  2.  Показать, как происходят процессы выветривания и почвообразования;
  3.  Раскрыть условия обитания микроорганизмов в воде и почве, рассмотреть основные группы почвенных микроорганизмов;
  4.  Использование знаний о деятельности микроорганизмов в методике преподавания биологии.


1. Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы и других элементов

Возможность жизни на нашей планете определяется непрерывно протекающим круговоротом основных биогенных элементов (углерода, кислорода, водорода, азота, фосфора, серы и др.). Ведущая роль в процессах трансформации этих элементов принадлежит прокариотам. Приведем характерный пример. Содержание углекислого газа в атмосфере минимально (составляет всего 0,03%), и если бы не происходил постоянный возврат СО2 в атмосферу, этот газ был бы израсходован в процессе фотосинтеза за какие-нибудь 7лет. Дальнейшая жизнь оказалась бы невозможна. Однако этого не происходит. В результате разложения органических соединений различными группами микроорганизмов в атмосферу возвращается 90% углекислого газа, остальные 10% СО2 пополняются в атмосфере за счёт дыхания эукариот, а также за счет хозяйственной деятельности человека.

Помимо углекислого газа, при разложении органических соединений микроорганизмы возвращают в атмосферу и другие газообразные продукты, такие, как Н2, Н2S, N2, СН4. Таким образом, они осуществляют не только деструкцию растительного и животного опада, выполняя роль санитаров планеты, но одновременно регулируют газовый состав атмосферы.

Ведущая роль прокариот в процессах трансформации элементов в биосфере определяется прежде всего огромной численностью микроорганизмов, повсеместным распространением их, а также универсальностью ферментативного аппарата микробной клетки, способной перерабатывать любые вещества субстрата.

Запасы азота в природе очень велики. Он входит в состав всех организмов на Земле. Общее содержание его в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. Но еще более грандиозен запас азота в атмосфере: над каждым гектаром почвы поднимается столб воздуха, содержащий около 80000 тонн молекулярного азота. Ежегодно на образование вновь вырастающих растений требуется около 1,5 млрд. тонн азота в форме, доступной для усвоения растениями. Имеющегося в воздухе и почве азота хватило бы для обеспечения урожая, даже при одностороннем использовании, на несколько миллионов лет. Однако растения часто дают низкие урожаи именно из-за недостатка азота в почве. Это объясняется тем, что только небольшая группа азотистых соединений может быть быстро усвоена растениями. Не только свободный азот, но и многие формы связанного азота не могут служить источником азотного питания для растений. Азот, поступающий в виде белковых веществ в почву вместе с остатками растений и животных, совсем не годится для этих целей, он должен быть подвергнут минерализации, а образующийся при этом аммиак должен быть окислен в соли азотистой и азотной кислот. В основе процессов круговорота азота лежат следующие биохимические процессы: гниение белков, разложение мочевины, нитрификация, денитрификация и фиксация атмосферного азота. (8, 159)

Гниение, или аммонификация белковмикробиологический процесс, при котором под воздействием гнилостных микроорганизмов происходит гидролитическое расщепление белков, поступающих в почву с трупами животных и отмирающими растениями, с образованием промежуточных продуктов (альбумоз, пептонов, амино- и амидокислот), а также дурно пахнущих веществиндола, сероводорода, меркаптана, летучих жирных кислот.

Конечным продуктом гидролиза белков и дезаминирования аминокислот является NH3, почему этот процесс и называется аммонификацией белка. Таким образом, при гниении происходит минерализация белковых веществ, которая в зависимости от химического состава белков субстрата, вида гнилостных бактерий и условий их жизнедеятельности может быть полной или не доведенной до конца. При полной минерализации белка образуются СО2, NH3, Н2О, H2S и минеральные соли. При широком доступе кислорода продукты гидролиза белков подвергаются полному окислению, зловонных веществ образуется значительно меньше, чем при анаэробных условиях. Такой процесс называется тлением.

Гниениепреимущественно анаэробный процесс, при котором полного окисления некоторых продуктов, например жирных кислот, не происходит. Гнилостные микробы широко распространены в почве, воде, воздухе, в животных и растительных организмах. Поэтому любой продукт, не защищенный от них, быстро подвергается гниению. Его вызывают как анаэробные, так и аэробные микроорганизмы, причем они могут действовать и преемственно, и одновременно. Наиболее энергичными возбудителями гниения, сопровождающегося глубоким распадом белка и образованием азотистых и безазотистых соединений (индола, скатола, жирных кислот и др.), являются Bacillus mycoides, B.Mesentericus, а также Clostridium putrificum, C.sporogenes. Последние дваанаэробы, содержатся в кишечнике и после смерти вызывают зловонное разложение трупов.

Процессы гниения протекают только при наличии условий, благоприятных для жизнедеятельности их возбудителей (влажность, температура и т. п.). В сухой песчаной почве трупы подвергаются мумификации (высушиванию без гниения). Гнилостные процессы происходят и в организме человека, в частности в кишечнике; причиной их являются Е.со1i и другие микробы. По мнению И. И. Мечникова, продукты гниения (скатол, индол и др.), постоянно образующиеся в организме, вызывают хроническую интоксикацию и являются одной из причин преждевременного старения.

Гнилостные процессы протекают также при газовой гангрене: ткани, омертвевшие под влиянием образуемых возбудителями этой болезни экзотоксинов, заселяются гнилостными аэробными и анаэробными бактериями и подвергаются распаду. Некоторые гнилостные процессы используются в промышленности с полезной целью, например при выработке кожи для отделения от нее шерстишвицевании.

Исключительное значение процессов гниения заключается в том, что они играют важную роль в естественном самоочищении почвы и воды. Этим пользуются для строительства специальных очистных сооружений (полей ассенизации, орошения и т. п.), для биологической переработки и обезвреживания фекальных нечистот и сточных вод, содержащих много мертвых белковых субстратов. Гниение ведет к обогащению почвы азотистыми продуктами. (13, 250)

Следующим важным этапом круговорота азота, вслед за образованием NH3, является процесс нитрификации, т. е. окисление NH3 вначале в азотистую, а затем в азотную кислоту, соли которых наиболее пригодны для азотного питания растений. Процесс нитрификации вызывается двумя группами открытых С. Н. Виноградским нитрифицирующих бактерий. Нитрозобактерии окисляют NH3 до азотистой кислоты, а нитробактерии окисляют азотистую кислоту в азотную.

Нитрифицирующие бактериистрогие аэробы, хемолитотрофы. Энергию окисления они используют для восстановления СО2 в гексозу. Благодаря нитрифицирующим бактериям в почве могут образовываться огромные скопления солей азотной кислоты в виде селитры (в Чили, Перу). Завершая процесс минерализации белковых веществ, нитрифицирующие бактерии играют исключительно важную роль и в процессах самоочищения почвы и воды, и в санитарно-гигиенических устройствах (поля орошения и т. п.). Таким образом, нитрифицирующие бактерии способствуют повышению урожайности почвы благодаря накоплению в ней азотнокислых солей.

Однако в почве происходят и противоположные процессы, т.е. денитрификации, или восстановлений микроорганизмами солей азотной кислоты в соли азотистой кислоты и в другие простые азотистые соединения, вплоть до свободного азота, который, уходит в атмосферу.

Способностью восстанавливать нитраты в нитриты обладает большое количество видов бактерий и грибов.

Денитрифицирующие бактерии (в частности, некоторые виды Pseudomonas) в анаэробных условиях используют денитрификацию как основную форму дыхания. Для них соли азотной и азотистой кислот служат источниками азота. Энергию для своей специфической деятельности денитрифицирующие бактерии получают из органических веществ, которыми богата почва. Денитрифицирующие бактерии наносят вред сельскому хозяйству, так как способствуют обеднению почвы минеральным азотом и переходу свободного азота в атмосферу. Особенно энергично процессы денитрификации развиваются в слежавшейся, плохо аэрируемой почве. Однако убыль азота из почвы, вызванная активностью денитрифицирующих бактерий, компенсируется деятельностью свободноживущих аэробных и анаэробных и клубеньковых азотфиксирующих бактерий. Более 90% азота связывают азотфиксирующие бактерии: на каждый гектар почвы ежегодно от 25 до 300 кг азота привносят только они.

Так, при самом активном участии многих видов микроорганизмов, в природе происходит непрерывный круговорот азота, поддерживающий существование жизни на Земле. (16, 90)


Схема 1 «Круговорот азота».

Процессы распада безазотистых органических веществ обусловлены по преимуществу жизнедеятельностью микроорганизмов, а процессы созидательныефотосинтезом зеленых растений, водорослей и фотосинтезирующих бактерий. В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.

Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов. (6, 81)

Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктовгексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.

При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных виндаже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожениеяблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.

Уксуснокислое брожениебиологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затемуксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбозапромежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.

Молочнокислое брожениешироко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семейство Lactobacillaceae) лактоза расщепляется на составляющие ее гексозыглюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).

Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого броженияазотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium.

Маслянокислое брожениесложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктовуксусная, молочная, пропионовая и другие кислоты.

Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлозаединственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.

Серасоставная часть некоторых белков. Одним из конечных продуктов гниения белков является H2S. Сероводород не усваивается высшими растениями. Биохимические превращения серы восстановительного и окислительного порядка осуществляются серобактериями. Для них H2S является источником энергии. Серобактерии окисляют H2S с выделением свободной серы, которая отлагается у них в цитоплазме в виде капель.

В клетках бактерий сера окисляется далее до серной кислоты, образующиеся сульфаты служат прекрасным питательным веществом для высших растений. H2S в серную кислоту окисляют различные виды пурпурных серобактерий.

Наряду с такими сульфурирующими бактериями в природе не менее широко распространены и десульфурирующие микробы (аналоги денитрифицирующих бактерий), они восстановливают сульфаты, вызывая образование H2S. Выделение H2S десульфурирующими бактериями происходит в глубинах морей, поэтому в Черном море на глубине 2500 м содержание H2S доходит до 6,5 мл в 1 л воды. Значительное накопление H2S в результате биологического восстановления серы наблюдается в целебных грязях, в лиманах и других водоемах. В санитарном отношении серобактерии являются важными агентами начальной стадии биологического очищения сточных вод и разложения органических отбросов, содержащих серу. (2, 14)

С химической стороны круговорот фосфора достаточно прост, поскольку он встречается в живых организмах только в пятивалентном состоянии в виде свободных фосфатных ионов (РО4-3) или в составе органических фосфатных компонентов клетки. Бактерии не способны поглощать большинство органических фосфорсодержащих соединений, свои потребности в фосфоре они удовлетворяют путем поглощения фосфатных ионов, из которых затем синтезируют органические фосфатные соединения. При разложении гнилостными бактериями белковых веществ одновременно с минерализацией азота происходит превращение органического фосфора в фосфатные ионы. Поскольку большая часть фосфатов, несмотря на быстрый круговорот фосфора, находится в виде нерастворимых солей кальция, железа или алюминия, фосфаты также служат фактором, ограничивающим рост растений. Растворимые фосфаты постоянно переносятся из почвы в море вследствие выщелачивания. Этот перенос имеет однонаправленный характер. Лишь небольшая часть фосфатов возвращается на сушу, главным образом в виде отложений гуано морскими птицами. Поэтому доступность фосфатов для растений зависит от непрерывного перевода в раствор нерастворимых фосфатных отложенийпроцесса, в котором важную роль играют микроорганизмы. Образуемые ими кислые продукты метаболизма (органические кислоты, а также азотная и серная) растворяют фосфат кальция, а образуемый ими H2S способствует растворению фосфата железа. (3, 11)

2. Значение микроорганизмов в геологических процессах

Вряд ли можно переоценить роль микроорганизмов как разрушителей горных пород и создателей горючих ископаемыхкаменного угля, торфа, сапропелей, нефти. Остановимся сначала на разрушительной деятельности микроорганизмов.

Состоящий из плотно спаянных между собою зерен кварца, кусочков полевого шпата и листочков слюды гранит подвергается механическому выветриванию (разрушению) под влиянием резких колебаний температуры (днем и ночью) и проникающей в трещины замерзающей и оттаивающей воды. Это механическое выветривание приводит к образованию дресвы, т.е. смеси отдельных зерен кварца, слюды и полевого шпата.

Кроме того, полевой шпат и слюда разлагаются химически под влиянием углекислого газа и воды. При этом образуются растворимые в воде углекислые соли калия и натрия, углекислый кальций, растворимый в содержащей углекислоту воде, и нерастворимый каолин (глина), уносимый водой во взмученном состоянии.

Попавшие случайно на гранит небольшие количества органического вещества дают возможность размножаться многим сапрофитным бактериям, которые, выделяя углекислоту, способствуют дальнейшему выветриванию горных пород, частично растворяя их.

С другой стороны, на тех же голых скалах могут поселяться не нуждающиеся в органическом веществе хемотрофные нитрифицирующие бактерии, образующие азотную кислоту. Незначительные количества аммиака, необходимые им для окисления, могут образовать сапрофитные микроорганизмы.

Дальше поселяются некоторые сине-зеленые водоросли, фиксирующие атмосферный азот самостоятельно или в сообществе с азотфиксаторами; затем корковые лишайники, также являющиеся пионерами заселения таких местообитаний. Лишайники могут фиксировать атмосферный азот или за счет сине-зеленых организмов, или присутствующих в них азотфиксирующих бактерий. Затем уже появляются мхи и некоторые высшие растения. Так постепенно идет разрушение горных пород и одновременно создается почвенный перегной (гумус), растворимый в щелочах и осаждаемый в кислотах. Гумус образуется в результате разложения органического вещества микроорганизмами, одновременно синтезирующими это сложное вещество, обусловливающее многие физические и химические свойства почвы и ее плодородие.

Разрушающая способность микроорганизмов очень велика. В настоящее время известно, что специальные группы микроорганизмов могут использовать в качестве источника углерода для своего питания нефть, фенолы, парафин, нафталин и ряд других соединений, совершенно не доступных для большинства обычных сапрофитных микроорганизмов. (9, 162)

Помимо разрушающей горные породы деятельности, микроорганизмы участвуют и в образовании ряда веществ, отлагавшихся в предыдущие геологические эпохи и откладывающихся в настоящее время.

Горючие ископаемые делятся на две большие группы: гумусовые и сапропелевые (битуминозные). К гумусовым относятся, помимо перегноя почвы, торф, бурый уголь, каменный уголь и антрацит. К сапропелевым (от греческих слов «сапрос» —гнилой и «пелос» —ил) относятся натуральный газ, нефть, асфальты, горный воск и горючие, битуминозные, сланцы. Все перечисленные породы представляют собою остатки растений и частично животных прошлых геологических эпох.

Гумусовые породы образовались из растений, населявших болота, при недостатке кислорода, под влиянием разложения их анаэробными микроорганизмами.

Для образования каменных углей служили вначале одни из первых обитателей сушипсилофиты и низшие папоротникообразные, а затем высшие папоротникообразные. Для бурых углей материал давали уже голосеменные растения. Наконец, торф образовывался и образуется в настоящее время из остатков высших растений и мхов, главным образом торфяного мха.

Образование гумусовых пород шло в анаэробных условиях. Основными материалами служили клетчатка и лигнин. Клетчатка, как менее стойкое к разложению вещество, разлагалась сильнее, а лигнин значительно медленнее. Так же медленно разлагаются и другие весьма стойкие части клеточных оболочек—суберин, кутан и некоторые другие вещества. Все они и послужили для образования гумусовых пород.

Сапропелевые породы образовались в несколько иных условиях, чем гумусовые. Сапропель, или гнилой ил, образуется на дне как пресноводных, так и соленых водоемов (морей). Особенно его много в тех морях, где при наличии органических остатков, в отсутствие кислорода воздуха происходит восстановление сульфатов благодаря деятельности сульфатредуцирующих бактерий. Сапропелевые породы образуются из планктонных водорослей и некоторого количества остатков животных организмов. Водоросли не содержат лигнина, а богаты клетчаткой и жироподобными веществами. Поэтому и элементарный состав гумусовых и битуминозных пород различен. У гумусовых пород содержание углерода колеблется от 50 до 90%, а у сапропелевых это отношение более постоянно. Оно меняется в пределах от 75 до 83%. К сапропелевым породам относят нефть, горючие сланцы, асфальт и др.

Самый материал (растения), из которого образовались горючие ископаемые, известен, а также обнаружены и ископаемые бактерии, что лишний раз подтверждает биогенное происхождение каустобиолитов.

Бактерии служат и для разведки нефтяных и газовых месторождений. На основании распределения в подпочвенных слоях бактерии, окисляющих газообразные углеводороды, проводилась микробиологическая разведка нефтяных и газовых месторождении (Г. А. Могилевский, 1938; С. И. Кузнецов, 1947, и др.). Чаще всего исследуют соответствующую микрофлору подпочвенной воды и реже грунтов. Микробиологическая разведка важна тем, что она может быстро обнаружить, имеется ли необходимость проводить в данном месте дорогостоящее глубокое бурение или нет. (6, 148)

Различные микроорганизмы участвуют и в таких геологических процессах как выветривание, почвообразование.

Превращение горной породы в почву происходит в результате одновременно идущих процессоввыветривания и почвообразования, которые тесно связаны друг с другом. Процесс выветривания часто предшествует процессу почвообразования.

Горные породы и минералы на поверхности Земли под влиянием колебаний температуры, атмосферных осадков, газов, химических и биохимических процессов, связанных с деятельностью живых организмов и других факторов, разрушаются. Процессы разрушения и изменения поверхностных пород земной коры называются выветриванием. В зависимости от факторов, оказывающих влияние на выветривание, различают физическое, химическое и биологическое выветривание.

c2

c1

d4

d5

Схема 2 «Выветривание».

Биологическое выветриваниеэто процесс механического разрушения и химического изменения горных пород и минералов под действием растительных и животных организмов и продуктов их жизнедеятельности. Многочисленные микроорганизмы и корни растений в процессе своей жизнедеятельности выделяют во внешнюю среду углекислый газ и различные кислоты, которые оказывают разрушающее действие на минералы и горные породы. Так, силикатные бактерии, выделяющие CO2 и органические кислоты, разрушают полевые шпаты и фосфориты, освобождая при этом калий в доступной для растений форме и фосфорную кислоту. Некоторые железобактерии окисляют и разрушают соединения железа. Масляно-кислые и нитрифицирующие микроорганизмы разлагают апатиты и силикаты. Значительную роль в биологическом выветривании играют диатомовые водоросли, которые способствуют выветриванию каолинита и растворению известняков. Установлено значительное воздействие сине-зеленых водорослей и нитрифицирующих бактерий на гранит. При разложении остатков растений и микроорганизмов образуются гуминовые кислоты, которые ускоряют разрушение минералов и горных пород.

В результате выветривания горная порода приобретает ряд новых качеств. Она пропускает и задерживает воду, т. е. становится водопроницаемой и влагоемкой, поглощает различные соединения, в ней появляются элементы минерального питания растений в доступной для них форме, а также накапливается органическое вещество.

Продукты выветривания минералов и горных пород, как правило, не остаются на месте образования, а перемещаются ветром, водой, ледниками. Таким образом, в результате совместного длительного взаимодействия массы материнской горной породы с живыми организмами, продуктами их жизнедеятельности и элементами гидро- и атмосферы происходит превращение горной породы в почву.

В процессе выветривания горная порода превращается вначале в рухляк, а затем в материнскую почвообразующую породу. На продуктах физического и химического выветривания горной породы (рухляке) поселяются микроорганизмы, растения и животные, в результате жизнедеятельности которых происходит накопление органического вещества, а следовательно, и аккумуляция в поверхностных горизонтах горной породы энергии солнечных лучей, важных зольных элементов и азота (азотглавнейший элемент питания растений, практически не содержится в изверженных горных породах). Заселение поверхности рыхлой горной породы растениями осуществляется постепенно, причем наблюдается последовательная смена одних растительных сообществ другими. Сначала поселяются низшие организмы, среди которых выделяют автотрофные бактерии и микроскопические водоросли. Низшие растения, извлекая из породы труднодоступные элементы и связывая азот, создают условия для поселения новых, более сложных растительных группировок, вплоть до высших. Растения своими корнями извлекают из рухляковой породы необходимые им химические элементы, осуществляют фотосинтез, создают из поглощенных веществ органические соединения и концентрируют их в своих тканях. После отмирания живых организмов часть разложившихся остатков идет на синтез новых сложных органических веществ, которые закрепляются в почве в виде гумусовых веществ, другая часть полностью минерализуется при помощи микроорганизмов и вновь возвращается в окружающую среду в форме минеральных соединений. Последние служат источником пищи и энергии для новых, более сложных микроорганизмов и растений. (12, 45)

3. Условия обитания микроорганизмов в почве и воде

Почвасреда обитания многочисленных видов микроорганизмов и крупнейший резервуар их в природе. Количество микробов в 1 г почвы измеряется обычно сотнями и тысячами миллионов клеток. Оно варьирует от 200 млн. в глинистой почве до 5 млрд. в черноземной почве. В 1 г пахотного слоя почвы содержится 1-10 млрд. бактерий, а в слое ее толщиной 15 см на площади в 1 га может содержаться от 1 до 5-6 тонн микробной массы. Даже в песках пустынь, где почти отсутствует влага, содержится до 100 000 микробов в 1 г. Численность и видовой состав их в почве зависят от содержания в ней органических веществ и влаги, структуры почвы, способа ее сельскохозяйственной обработки, климатических условий, характера растительного покрова, степени загрязнения почвы отходами хозяйственной деятельности человека и многих других факторов. Состав микрофлоры почвы складывается из различных комбинаций бактерий (сотни и тысячи видов), грибов, простейших и вирусов. Фактически она содержит представителей всех царств жизнивирусов, архебактерий, эубактерий и эукариот во всем их многообразии, которое зависит от действия многих факторов. (9, 92)

Самый поверхностный слой почвы содержит ограниченное число микробов из-за действия солнечных лучей и высушивания. Главная масса микробов содержится на глубине 10-20 см, в нижележащих ее горизонтах количество микроорганизмов уменьшается, и на глубине 5-6 метров почва может быть уже стерильной, так как распространению микробов в глубину препятствует высокая поглотительная способность почвы.

Почва постоянно загрязняется различными отбросами, выделениями человека и животных, мертвыми растениями и животными. Огромная роль в процессах самоочищения почвы и в круговороте веществ в природе принадлежит микроорганизмам. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифицирующие, азотфиксирующие, денитрифицирующие и другие.

Патогенные микроорганизмы попадают в почву с испражнениями, мочой, гноем, мокротой, слюной и другими выделениями, с трупами людей и животных, погибших от инфекционных заболеваний. Попадая в почву, значительная часть патогенных микроорганизмов, не образующих спор, рано или поздно погибает. Сроки выживания в почве возбудителей кишечных инфекций (дизентерии, брюшного тифа, холеры), чумы, бруцеллеза, туляремии, туберкулеза широко варьируют и составляют от нескольких часов до нескольких месяцев. Отмирание патогенных бактерий в почве зависит от ряда причин: высушивания; отсутствия необходимых питательных субстратов; действия антибиотических веществ, вырабатываемых почвенными бактериями и грибами; солнечных лучей; бактериофагов и т. п. Значительно дольше в почве сохраняются спорообразующие патогенные бактерииаэробные и анаэробныевозбудители столбняка, газовой гангрены, ботулизма (их споры также сохраняются в почве многие годы, а при благоприятных условиях прорастают и бактерии размножаются, поддерживая тем самым свое существование в почве). Поэтому почва играет основную роль в эпидемиологии столбняка, газовой гангрены (особенно в военных условиях) и ботулизма, она является основным резервуаром возбудителей этих заболеваний. (13, 352)

Почва является важнейшим компонентом любого биогеоценоза, а следовательно, и биосферы в целом. Плодородие почвы в значительной мере определяет продуктивность естественных ценозов и агроценозов и, в свою очередь, зависит от жизнедеятельности организмов, ее населяющих.

Основы учения о почве заложены трудами выдающихся русских ученых: В.В. Докучаева, В.И. Вернадского, Б.Б. Полынова, С.П. Костычева, В.Р., Вильямса. В.В. Докучаев определил почву как особое природное тело, развивающееся под влиянием ряда факторовматеринской породы, климата, рельефа местности, возраста почвообразовательного процесса, а также жизнедеятельности растительных и животных организмов. Он первый обратил внимание на роль микроорганизмов в почвообразовательном процессе.

Современный уровень наших знаний о почве и ее обитателях свидетельствует о главенствующей роли микроорганизмов в процессах минерализации органических веществ, происходящих в почве и определяющих круговорот основных биогенных элементов в природе.

Почва является средой обитания для макро- и микроорганизмов. Для макроорганизмов почва выступает как целостная среда обитания. Для микроорганизмов почву следует рассматривать как сложную гетерогенную систему микросред с резко различными условиями обитания в каждом отдельном микролокусе. Так, микроорганизмы, поселяющиеся на поверхности почвенных агрегатов и внутри их, развиваются в совершенно разных условиях по доступности компонентов питательного субстрата, аэрации, влажности, температуры, pН и т. д.

Подавляющая масса микроорганизмов почвы (до 8090%) находится в адсорбированном состоянии на поверхности почвенных агрегатов, корней растений или веществах органического опада. Лишь незначительное число микроорганизмов переходит в почвенный раствор. Большая часть микроорганизмов пребывает в почве в неактивном состояниив виде эндоспор, микроцист, покоящихся вегетативных клеток. Вся масса микроорганизмов составляет так называемый пул почвы или ее микробный запас. Роль пула почвы заключается в поддержании гомеостаза  равновесного состояния данного микролокуса по содержанию органических и минеральных веществ, гумуса, физиологически активных веществ, разлагающихся минералов и т. п. В свою очередь, микробный пул почвы характеризуется поступлением в нее продуктов органического опада, корневыми выделениями растений, наличием гумусовых веществ. Таким образом, почва, как среда обитания, оказывает селекционирующее влияние на ее микрофлору, а микробный пул почвы со своей стороны обладает сильным средообразующим действием.

Структура каждого микролокуса почвы гетерогенна и включает три фазы: твердую, жидкую и газообразную.

Твердая фаза почвы представлена в основном минеральными компонентами, а также органическими соединениями.

На твердой фазе почвы адсорбирована основная масса микроорганизмов. Адсорбированное состояние обеспечивает микроорганизмам непосредственный контакт с питательным субстратом, предотвращает их вымывание, повышает устойчивость к неблагоприятным условиям среды.

Жидкую фазу почвы составляет почвенный раствор, поднимающийся по капиллярам. Из почвенного раствора микроорганизмы усваивают воду и питательные вещества. В клетках большинства микроорганизмов осмотическое давление составляет 35 мПа, т. е. значительно выше, нежели в почвенном растворе (0,5*1055*105 Па), при среднем значении влажности почвы 4060% от полной влагоемкости.

Содержание воздуха в почве зависит от ее структуры и влажности. Газовый состав почвенного воздуха существенно отличается от атмосферного. В нем содержится значительно больше CO2от 0,1 до 1,5% (в атмосфере 0,03% CO2) и относительно меньше кислородаот 2 до 16% (в атмосфере 21% O2). Содержание CO2 и O2 в почвенном воздухе определяет соотношение аэробных и анаэробных форм микроорганизмов в структуре микробоценоза. (1, 150)

Микробиологические процессы, происходящие в почве, оказывают существенное влияние на газовый состав атмосферы. В процессах минерализации органических веществ, осуществляемых почвенной микрофлорой, в атмосферу выделяются CO2, оксид углерода (II), метан, водород, азот, оксиды азота (I и II), сероводород, а из атмосферы в почву поступает кислород.

Из внешних факторов окружающей среды на развитие почвенной микрофлоры влияют температура, кислотность почвенного раствора, степень засоления, механический состав почвы и др.

В почве выделяют различные группы микрофлоры.


cc 


Диплом на заказ


1.  Краткая биография А
2. Философия Проблемно тематический курс
3. Метод средних величин в изучении общественных явлений
4. тематика Розділ 1
5. тема на тему- Место английского фунта стерлингов в мировой валютной системе Студентка группы С
6. ТЕМА ПЛАТНЫХ УСЛУГ В СФЕРЕ КУЛЬТУРЫ17 III
7. е СССР в начале 3841гг
8. Задание 1 Зависимость освещённости рабочей поверхности стенда от электрической мощности ламп накаливани
9. Тема- Лексичні засоби стилістики
10. Реферат- Энергетический напиток Red Bull
11. Лабораторная работа 01
12. Задание к курсовой работе по информатике Дано- Балка прямоугольного сечения с размерами BH
13. Правовая охрана атмосферного воздуха озонового слоя и климата
14. Договоры о передаче имущества
15. Кадры решают все вновь приобретает актуальность
16. ВТ СР ЧТ.html
17. Задание 1 Произвести отбор почвы для физикохимического анализа
18. Тема- Обработка массивов 1 уровень сложности 1.
19. ссылки на видео и на чушь абу мусы найдете сами
20. Чусовая- исторический портрет