Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

В биологии эволюция это изменение наследственных признаков популяции организмов в течение нескольких п

Работа добавлена на сайт samzan.ru: 2015-07-10


Вопросы эволюции органического мира.

1. В биологии, эволюция — это изменение наследственных признаков популяции организмов в течение нескольких поколений. Изменения вызываются взаимодействием трёх основных процессов: вариабельности, воспроизведения и селекции. Гены, которые передаются потомству, в результате выражения образуют сумму признаков организма (фенотип). При воспроизведении организмов у их потомков появляются новые или изменённые признаки, которые возникают либо в результате мутации или при переносе генов между популяциями или даже видами. У видов, которые размножаются половым путем, новые комбинации генов возникают при генетической рекомбинации. Эволюция происходит, когда наследственные различия становятся более частыми или редкими в популяции.

Существуют два основных эволюционных механизма. Первый — это естественный отбор, то есть процесс, в результате которого наследственные признаки, благоприятные для выживания и размножения, распространяются в популяции, а неблагоприятные становятся более редкими. Это происходит потому, что особи с благоприятными признаками размножаются с большей вероятностью, поэтому больше особей следующего поколения имеют те же признаки. Адаптации к окружающей среде возникают в результате накопления последовательных, мелких, случайных изменений и естественного отбора варианта, наиболее приспособленного к окружающей среде.

Второй основной механизм — это генетический дрейф, независимый процесс случайного изменения в частоте признаков. Генетический дрейф происходит в результате вероятностностных процессов, которые обуславливают случайные изменения в частоте признаков в популяции. Хотя изменения в результате дрейфа и селекции в течение одного поколения довольно малы, различие в частотах накапливаются в каждом последующем поколении и со временем приводят к значительным изменениям в живых организмах. Этот процесс может завершиться образованием нового вида. Более того, общие черты, которые есть у всех живых организмов, предполагают, что все известные виды произошли от общего предка (или пула генов) в результате процесса постепенной дивергенции.

Эволюционная биология изучает эволюционные процессы и выдвигает теории для объяснения их причин. Изучение окаменелостей и разнообразия видов живых организмов к середине XIX века убедило большинство учёных, что виды изменяются с течением времени. Однако механизм этих изменений оставался неясен до публикации в 1859 году книги Происхождение видов английского учёного Чарльза Дарвина о естественном отборе как движущей силе эволюции. Теория Дарвина и Уоллеса, в конечном итоге, была принята научным сообществом. В 30-х годах прошлого века идея дарвиновского естественного отбора была объединена с законами Менделя, которые сформировали основу синтетической теории эволюции (СТЭ). СТЭ позволила объяснить связь субстрата эволюции (гены) и механизма эволюции (естественный отбор).

2. Возникновение жизни — процесс превращения неживой природы в живую.

В разное время относительно возникновения жизни на Земле выдвигались следующие теории:

  •  Теория биохимической эволюции
  •  Теория панспермии
  •  Теория стационарного состояния жизни
  •  Теория самозарождения

В настоящее время теории самозарождения и стационарного состояния представляют собой только исторический или философский интерес, так как результаты научных исследований противоречат выводам этих теорий.

Теория панспермии не решает принципиального вопроса о возникновении жизни, она только отдаляет его в ещё более туманное прошлое Вселенной, хотя и не может исключаться как гипотеза о начале жизни на Земле.

Биохимическая эволюция

Генобиоз и голобиоз

В зависимости от того, что считается первичным, различают два методологических подхода к вопросу возникновения жизни:

Генобиоз — методологический подход в вопросе происхождения жизни, основанный на убеждении в первичности молекулярной системы со свойствами первичного генетического кода.

Голобиоз — методологический подход в вопросе происхождения жизни, основанный на идее первичности структур, наделенных способностью к элементарному обмену веществ при участии ферментного механизма.

Белково-коацерватная теория Опарина

Согласно этой теории процесс, приведший к возникновению жизни на Земле, может быть разделён на три этапа:

  •  Возникновение органических веществ
  •  Возникновение белков
  •  Возникновение белковых тел

Астрономические исследования показывают, что как звёзды, так и планетные системы возникли из газопылевого вещества. Наряду с металлами и их окислами в нём содержались водород, аммиак, вода и простейший углеводород — метан.

Условия для начала процесса формирования белковых структур установились с момента появления первичного океана. В водной среде производные углеводородов могли подвергаться сложным химическим изменениям и превращениям. В результате такого усложнения молекул могли образоваться более сложные органические вещества, а именно углеводы.

Наука доказала, что в результате применения ультрафиолетовых лучей можно искусственно синтезировать не только аминокислоты, но и другие биохимические вещества. Большой победой современной биохимии является первый полный синтез молекулы белков: синтезирован гормон инсулин, управляющий углеводным обменом.

Согласно теории Опарина, дальнейшим шагом по пути к возникновению белковых тел могло явиться образование коацерватных капель. При определённых условиях водная оболочка органических молекул приобретала чёткие границы и отделяла молекулу от окружающего раствора. Молекулы, окружённые водной оболочкой, объединялись, образуя многомолекулярные комплексы — коацерваты.

Коацерватные капли также могли возникать при простом смешивании разнообразных полимеров. При этом происходила самосборка полимерных молекул в многомолекулярные образования — видимые под оптическим микроскопом капли.

Капли были способны поглощать извне вещества по типу открытых систем. При включении в коацерватные капли различных катализаторов (в том числе и ферментов) в них происходили различные реакции, в частности полимеризация поступающих из внешней среды мономеров. За счёт этого капли могли увеличиваться в объёме и весе, а затем дробиться на дочерние образования. Таким образом, коацерваты могли расти, размножаться, осуществлять обмен веществ.

Далее коацерватные капли подвергались естественному отбору, что обеспечило их эволюцию.

Теория была обоснована, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путем случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул (например, эффективные катализаторы, обеспечивающие преимущество данному коацервату в росте и размножении), то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам? Теория оказалась неспособной предложить решение проблемы точного воспроизведения — внутри коацервата и в поколениях — единичных, случайно появившихся эффективных белковых структур. Однако, было показано, что первые коацерваты могли образоваться самопроизвольно из липидов, синтезированных абиогенным путем, и они могли вступить в симбиоз с "живыми растворами" – колониями самовоспроизводящихся молекул РНК, среди которых были и рибозимы, катализирующие синтез липидов, а такое сообщество уже можно назвать организмом.

Мир РНК как предшественник современной жизни

Мир РНК — гипотетическая стадия возникновения жизни на Земле, в которую функции как хранения генетической информации, так и катализа химических реакций выполняли ансамбли молекул РНК. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды.

Панспермия

Согласно теории Панспермии, предложенной в 1865 году немецким ученым Г. Рихтером и окончательно сформулированной шведским ученым Аррениусом в 1895 году, жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с метеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям. Однако до сих пор нет достоверных фактов, подтверждающих внеземное происхождение микроорганизмов, найденных в метеоритах. Но если бы даже они попали на Землю и дали начало жизни на нашей планете, вопрос об изначальном возникновении жизни оставался бы без ответа.

Самозарождение жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Древнем Египте в качестве альтернативы креационизму, с которым она сосуществовала. Аристотель (384—322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Согласно этой гипотезе, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: ее признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение еще многих веков.

Известный ученый Ван Гельмот описал эксперимент, в котором он за три недели якобы создал мышей. Для этого нужны были грязная рубашка, тёмный шкаф и горсть пшеницы. Активным началом в процессе зарождения мыши Ван Гельмот считал человеческий пот.

В 1688 году итальянский биолог и врач Франческо Реди подошел к проблеме возникновения жизни более строго и подверг сомнению теорию спонтанного зарождения. Реди установил, что маленькие белые червячки, появляющиеся на гниющем мясе, — это личинки мух. Проведя ряд экспериментов, он получил данные, подтверждающие мысль о том, что жизнь может возникнуть только из предшествующей жизни (концепция биогенеза).

Эти эксперименты, однако, не привели к отказу от идеи самозарождения, и хотя эта идея несколько отошла на задний план, она продолжала оставаться главной версией зарождения жизни.

В то время как эксперименты Реди, казалось бы, опровергли спонтанное зарождение мух, первые микроскопические исследования Антони ван Левенгука усилили эту теорию применительно к микроорганизмам. Сам Левенгук не вступал в споры между сторонниками биогенеза и спонтанного зарождения, однако его наблюдения под микроскопом давали пищу обеим теориям.

В 1860 году проблемой происхождения жизни занялся французский химик Луи Пастер. Своими опытами он доказал, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом. Учёный кипятил в воде различные среды, в которых могли бы образоваться микроорганизмы. При дополнительном кипячении микроорганизмы и их споры погибали. Пастер присоединил к S-образной трубке запаянную колбу со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то, что доступ воздуха был обеспечен.

В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.

Теория стационарного состояния

Согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности — либо изменение численности, либо вымирание.

Однако гипотеза стационарного состояния в корне противоречит данным современной астрономии, которые указывают на конечное время существования любых звёзд и, соответственно, планетных систем вокруг звёзд. По современным оценкам, основанным на учете скоростей радиоактивного распада, возраст Земли, Солнца и Солнечной системы исчисляется ~4,6 млрд лет. Поэтому эта гипотеза обычно не рассматривается академической наукой.

Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводит в качестве примера представителя кистеперых рыб — латимерию (целаканта). По палеонтологическим данным кистеперые вымерли в конце мелового периода. Однако это заключение пришлось пересмотреть, когда в районе Мадагаскара были найдены живые представители кистеперых. Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми останками, можно сделать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее сторонники интерпретируют появление ископаемых остатков в экологическом аспекте. Так, например, внезапное появление какого-либо ископаемого вида в определенном пласте они объясняют увеличением численности его популяции или его перемещением в места, благоприятные для сохранения остатков.

Религиозные версии возникновения жизни

Креационизм

Креационизм (от англ. creation — создание) — религиозно-философская концепция, в рамках которой всё многообразие органического мира, человечества, планеты Земля, а также мир в целом, рассматриваются как намеренно созданные неким верховным существом или божеством. Теория креационизма, отсылая ответ на вопрос о возникновении жизни к религии (сотворение жизни Богом), по критерию Поппера находится вне поля научных изысканий (так как она неопровержима: научными методами невозможно доказать, как то что Бог не сотворял жизни, так и то, что Бог ее сотворял). Кроме того, эта теория не дает удовлетворительного ответа на вопрос о причинах возникновения и существования самого верховного существа, обычно просто постулируя его безначальность.

5. Вид (лат. species) — таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды. Вид — реально существующая генетически неделимая единица живого мира, основная структурная единица в системе организмов, качественный этап эволюции жизни.

Долгое время считалось, что любой вид — это закрытая генетическая система, то есть между генофондами двух видов нет обмена генами. Это утверждение верно для большинства видов, однако из него есть исключения. Так, к примеру, львы и тигры могут иметь общее потомство (лигры и тиграны), самки которого плодовиты — могут рожать как от тигров, так и львов. В неволе скрещиваются и многие другие виды, которые в природных условиях не скрещиваются из-за географической или репродуктивной изоляции. Скрещивание (гибридизация) между разными видами может происходить и в природных условиях, особенно при антропогенных нарушениях среды обитания, нарушающих экологические механизмы изоляции. Особенно часто гибридизуются в природе растения. Заметный процент видов высших растений имеет гибридогенное происхождение — они образовались при гибридизации в результате частичного или полного слияния родительских видов.

Один вид можно отделить от другого по пяти основным признакам.

  •  Морфологический критерий позволяет различать разные виды по внешним и внутренним признакам.
  •  Физико-биохимический критерий фиксирует неодинаковость химических свойств разных видов.
  •  Географический критерий свидетельствует, что каждый вид обладает своим ареалом.
  •  Экологический позволяет различать виды по комплексу абиотических и биологических условий, в которых они сформировались, приспособились к жизни.
  •  Репродуктивный критерий обуславливает репродуктивную изоляцию вида от других, даже близкородственных.

Каждый вид представляет собой генетически замкнутую систему, репродуктивную изолированную от других видов.

В связи с неодинаковыми условиями среды особи одного вида в пределах ареала распадаются на более мелкие единицы — популяции. Реально вид существует именно в виде популяций.

Виды бывают монотипическими — со слабо дифференцированной внутренней структурой, они характерны для эндемиков. Политипические виды отличаются сложной внутривидовой структурой.

Внутри видов могут быть выделены подвиды — географически или экологически обособленные части вида, особи которых под влиянием факторов среды в процессе эволюции приобрели устойчивые морфофизиологические особенности, отличающие их от других частей этого вида. В природе особи разных подвидов одного вида могут свободно скрещиваться и давать плодовитое потомство.

Название вида

Научное название вида биномиально, то есть состоит из двух слов: названия рода, к которому принадлежит данный вид, и второго слова, называемого в ботанике видовым эпитетом, а в зоологии — видовым названием. Первое слово — существительное в единственном числе; второе — либо прилагательное в именительном падеже, согласованное в роде (мужском, женском или среднем) с родовым названием, либо существительное в родительном падеже. Первое слово пишется с заглавной буквы, второе — со строчной.

Примеры:

  •  Petasites fragrans — научное название вида цветковых растений из рода Белокопытник (Petasites) (русское название вида — Белокопытник душистый). В качестве видового эпитета использовано прилагательное fragrans («душистый»).
  •  Petasites fominii — научное название ещё одного вида из этого же рода (русское название — Белокопытник Фомина). В качестве видового эпитета использована латинизированная фамилия (в родительном падеже) ботаника Александра Васильевича Фомина (1869—1935), исследователя флоры Кавказа.

Иногда используются также записи для обозначения неопределённых таксонов в ранге вида:

  •  Petasites sp. — запись обозначает, что имеется в виду таксон в ранге вида, относящийся к роду Petasites.
  •  Petasites spp. — запись обозначает, что имеются в виду все таксоны в ранге вида, входящие в род Petasites (либо все остальные таксоны в ранге вида, входящие в род Petasites, но не включённые в некий данный список таких таксонов).

6. к списку вопросов

В биологии, эволюция — это изменение наследственных признаков популяции организмов в течение нескольких поколений. Изменения вызываются взаимодействием трёх основных процессов: вариабельности, воспроизведения и селекции. Гены, которые передаются потомству, в результате выражения образуют сумму признаков организма (фенотип). При воспроизведении организмов у их потомков появляются новые или изменённые признаки, которые возникают либо в результате мутации или при переносе генов между популяциями или даже видами. У видов, которые размножаются половым путем, новые комбинации генов возникают при генетической рекомбинации. Эволюция происходит, когда наследственные различия становятся более частыми или редкими в популяции.

Существуют два основных эволюционных механизма. Первый — это естественный отбор, то есть процесс, в результате которого наследственные признаки, благоприятные для выживания и размножения, распространяются в популяции, а неблагоприятные становятся более редкими. Это происходит потому, что особи с благоприятными признаками размножаются с большей вероятностью, поэтому больше особей следующего поколения имеют те же признаки. Адаптации к окружающей среде возникают в результате накопления последовательных, мелких, случайных изменений и естественного отбора варианта, наиболее приспособленного к окружающей среде.

Второй основной механизм — это генетический дрейф, независимый процесс случайного изменения в частоте признаков. Генетический дрейф происходит в результате вероятностностных процессов, которые обуславливают случайные изменения в частоте признаков в популяции. Хотя изменения в результате дрейфа и селекции в течение одного поколения довольно малы, различие в частотах накапливаются в каждом последующем поколении и со временем приводят к значительным изменениям в живых организмах. Этот процесс может завершиться образованием нового вида. Более того, общие черты, которые есть у всех живых организмов, предполагают, что все известные виды произошли от общего предка (или пула генов) в результате процесса постепенной дивергенции.

Эволюционная биология изучает эволюционные процессы и выдвигает теории для объяснения их причин. Изучение окаменелостей и разнообразия видов живых организмов к середине XIX века убедило большинство учёных, что виды изменяются с течением времени. Однако механизм этих изменений оставался неясен до публикации в 1859 году книги Происхождение видов английского учёного Чарльза Дарвина о естественном отборе как движущей силе эволюции. Теория Дарвина и Уоллеса, в конечном итоге, была принята научным сообществом. В 30-х годах прошлого века идея дарвиновского естественного отбора была объединена с законами Менделя, которые сформировали основу синтетической теории эволюции (СТЭ). СТЭ позволила объяснить связь субстрата эволюции (гены) и механизма эволюции (естественный отбор).

Пути достижения биологического прогресса

Эволюционные направления

Характеристика эволюционных направлений

Значение в эволюции

Примеры

Ароморфоз (морфофизио- логический прогресс)

крупные изменения в строении, существенно повышающие уровень организации организмов

ароморфозы не служат целям приспособления, а носят общий характер и дают возможность по-новому использовать условия внешней среды.

появление челюстей и скелета как места прикрепления мышц у позвоночных; замена гладкой мускулатуры у червей на поперечно-полосатую у членистоногих

Идиоадаптация

приобретение частных приспособлений к условиям среды без изменения уровня организации

изменения носят приспособительный характер; крайняя степень приспособления к конкретным, ограниченным условиям существования носит название специализации (переход к питанию только одним видом пищи, обитание в однородной среде и пр.)

покровительственная окраска животных, плоская форма тела скатов и камбалы, крючковидный клюв у хищных птиц, ласты у тюленей, китов и др.; питание коала только листьями эвкалипта, колибри — только нектаром цветков тропических растений

Общая дегенерация, или морфофизио- логический регресс

упрощение организации, исчезновение органов активной жизни

общая дегенерация связана главным образом с переходом организмов к паразитическому или сидячему образу жизни

утрата корней и листьев у растений-паразитов; исчезновение органов чувств, пищеварительной системы, упрощение строения и пр. у ленточных червей

8. Введение 

Прежде всего необходимо очертить круг вопросов, на которые теория происхождения многоклеточных должна давать ответы:

 Каковы были предки многоклеточных животных?

 Как в процессе эволюции изменялись эти предки?

 Когда и в каких условиях эти изменения происходили?

 Почему предполагаемые изменения стали выгодными именно в данных условиях?
До сих пор не существует единого мнения по поводу возникновения многоклеточности, поэтому здесь представлено несколько теорий происхождения многоклеточных организмов.



Теория гастреи. 

Согласно этой теории предком многоклеточных была гастрея - многоклеточный двуслойный организм. Она произошла от колониальных протистов с шарообразными колониями. Процесс интеграции клеток в колонии сделал возможным разделение функций между клетками: передние клетки утрачивают жгутики и превращаются в фагоциты, сидящие во впячивании на переднем конце - образуется кишечникстальные клетки утрачивают пищеварительную функцию и становятся чисто двигательными. Рот гастреи находился на переднем конце, и пища "сама заплывала" в кишечник. Симметрия у гастреи была радиальной. При переходе к сидячему образу жизни ее потомки эволюционировали в губок и кишечнополостных, а при переходе к ползанию по дну - в плоских червей и всех остальных многоклеточных.

Теория фагоцителлы. 

Эта теория во многом сходна с предыдущей. Но предком многоклеточных считается фагоцителла. Фагоцителла не имела рта и кишечника, пищеварение было внутриклеточное. Рот сформировалсяак просвет между клетками наружного слоя, ведущий во внутреннюю паренхиму. Располагался он, в отличие от гастреи на заднем конце тела. Кишечника еще не было. Но теперь возникла возможность питаться более крупной добычей: внутренние клетки могли окружать ее, образуя гигантскую пищеварительную вакуоль. Однако для хищничества нужна еще способность ловить добычу. Поэтому хищничать научились только настоящие многоклеточные - после того, как у них возникли мышцы и управляющая ими нервная система. Постепенно у потомков фагоцителлы сформировался постоянный кишечник. По мере увеличения размеров он мог усложняться: возникли боковые карманы, чтобы доставлять пищу к наружным слоям клеток. В дальнейшем у некоторых животных эти карманы могли отделиться, дав начало полости тела - целому. Фагоцителла обитала в толще воды. Нетрудно представить себе, как от нее могли произойти современные группы животных при переходе к жизни на дне. Когда рта еще не было, осевшая на дно фагоцителла "превратилась" в трихоплакса. После появления рта, но до появления кишечника при переходе к ползанию возникли бескишечные турбеллярии. Рот у них сместился на брюхо, и они стали двустороннесимметричными. После появления кишечника часть потомков фагоцителлы перешли к сидячему образу жизни на дне - они превратились в кишечнополостных.

Теория синзооспоры. 

Гаметы и зигота - единственные одноклеточные стадии в жизненном цикле животных. Многоклеточных поколений может быть в жизненном цикле несколько. Согласно данной теории многоклеточные произошли от колониальных протистов. У протистов встречаются клетки, сильно увеличенные за счет запасания питательных веществ - как яйцеклетка у животных. Часто такие клетки делятся несколько раз подряд - это похоже на дробление. Таким способом образуются у протистов одноклеточные мелкие расселительные стадии - зооспоры. У колониальных протистов зооспоры могут оставаться все вместе, образуя колонию - синзооспору. В процессе эволюции могла произойти неотения и утратиться взрослая сидячая стадия. Таким образом бластула - это синзооспора, семья зооспор.
Отличия от теорий
фагоцителлы и гастреи:

 Считается, что никогда не существовало однослойного шарообразного предка. Об этом свидетельствует то, что у всех многоклеточных бластулы не питаются. Не питаются и образующиеся из них паренхимулы. Поэтому и у древних многоклеточных такие стадии не были взрослыми организмами - это были всегда только личинки.

 Сидячий образ жизни примитивных взрослых многоклеточных.

 Наиболее примитивной из расселительных личинок считается бластула. В паренхимулу она превращается, готовясь к превращению во взрослый организм. Этот метаморфоз происходит после перехода к сидячему образу жизни. У всех остальных многоклеточных взрослая сидячая стадия утратилась. У этих животных личинки стали взрослыми - произошла неотения.

Теория целлюляризации. 

Эта теория на сегодняшнем уровне знаний имеет лишь исторический интерес. Она предполагает, что предками многоклеточных были сложно организованные протисты, такие как инфузории, а органы многоклеточных образовались в результате отделения мембранами органелл. Так, в соответствии с этой теорией кишечник образовался из глотки инфузории-туфельки, выделительная система - из ее сократительных вакуолей, покровы - из периферического слоя цитоплазмы. Эта теория полностью не соответствует взглядам современной науки и является безусловно ошибочной.

О предках многоклеточных 

В рамках рассмотреннных теорий предполагается, что скорее всего предками многоклеточных была группа воротничковых жгутиконосцев - хоанофлагеллят. В пользу этого говорит то, что для примитивных многоклеточных очень характерны воротничково - жгутиковые клетки, строение которых очень слабо отличается от строения хоанофлагеллят. Подходящий у воротничковых жгутиконосцев и способ питания. Все они гетеротрофы, питающиеся за счет фагоцитоза и пиноцитоза. Им свойственна колониальность. Среди колоний есть даже такие, у которых наружные клетки имеют воротнички и жгутики, а внутренние - амебоидные. Единственный недостаток хоанофлагеллят, как предков многоклеточных, состоит в том, что до сих пор у них достоверно известен только один способ размножения - деление пополам. Ничего похожего на половое размножение или на дробление у них нет. Тем не менее, многие ученые считают эту группу протистов наиболее вероятными предками всех Metazoa

 

9. Эволюцио́нное уче́ние (также эволюционизм и эволюционистика) — система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих ее биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Первые эволюционные идеи выдвигались уже в античности, но только труды Чарлза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеет огромное число прямых подтверждений.

История эволюционного учения

Эволюционные идеи в античности

По мнению некоторых исследователей, источник эволюционных идей проистекает из космогоний древних религий.[1] Идеи творения и развития вселенной и жизни идут в них параллельно друг другу, иногда тесно переплетаясь. Но мифический способ мышления мешает выкристаллизовать из них стройные концепции. Первую же такую концепцию из дошедших до нас разработал ученик Фалеса Милетского Анаксимандр. О схеме Анаксимандра мы знаем от историка I века до н. э. Диодора Сицилийского. В его изложении, когда молодая Земля осветилась Солнцем, её поверхность сначала затвердела, а потом забродила, возникли гниения, покрытые тонкими оболочками. В этих оболочках и зародились всевозможные породы животных.[2] Человек же будто бы возник из рыбы или похожего на рыбу животного.[3] Несмотря на оригинальность, рассуждения Анаксимандра чисто умозрительны и не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан, уделял наблюдениям больше внимания. Так, он отождествлял окаменелости, что находил в горах, с отпечатками древних растений и животных: лавра, раковин моллюсков, рыб, тюленей. Из этого он заключал, что суша некогда опускалась в море, неся гибель наземным животным и людям, и превращалась в грязь, а когда поднималась, отпечатки засыхали.[3] Гераклит, несмотря на пропитанность его метафизики идеей постоянного развития и вечного становления, не создал никаких эволюционных концепций.[1] Хотя некоторые авторы все же относят его к первым эволюционистам.[4]

Проблему наследственности впервые осветил Алкмеон, врач из ранних пифагорейцев. Он первым из греков пришел к выводу, что мыслящим органом человека является головной мозг. Отсюда он вывел, что сперма должна зарождаться именно в нем, а в половые органы она попадает по сосудам. При зачатии «от кого из родителей получено больше семени, тот пол и представлен».[5] Из этой фразы берет исток идея о комбинировании наследственных свойств, которую развил сицилийский врач, поэт и натурфилософ Эмпедокл. В его трактате «О природе» есть места[6], которые позволяют записать его в предтечи атомистам. Там же Эмпедокл выдвигает идею, которая напоминает принцип естественного отбора.

Единственным автором, у которого можно найти идею постепенного изменения организмов, был Платон. В своем диалоге «Государство» он выдвинул печально знаменитое предложение: улучшение породы людей путем отбора лучших представителей. Без сомнений, это предложение основывалось на известном факте отбора производителей в животноводстве. В современную эпоху необоснованное приложение этих идей к человеческому обществу развились в учение о евгенике, лежащее в основе расовой политики Третьего рейха.

Средневековье и возрождение

С подъемом уровня научного знания после «веков мрака» раннего средневековья эволюционные идеи вновь начинают проскальзывать в трудах ученых, теологов и философов. Альберт Великий впервые отметил самопроизвольную изменчивость растений, приводящую к появлению новых видов. Примеры, когда-то приведенные Теофрастом, он охарактеризовал как трансмутацию одного вида в другой.[4] Сам термин, очевидно, был взят им из алхимии. В XVI веке были переоткрыты ископаемые организмы, но только к концу XVII века мысль, что это не «игра природы», не камни в форме костей или раковин, а остатки древних животных и растений, окончательно завладела умами. В работе 1559 года «Ноев ковчег, его форма и вместимость» Иоганн Бутео привел вычисления, которые показывали, что ковчег не мог вместить все виды известных животных. В 1575 году Бернар Палисси, устроил в Париже выставку ископаемых, где впервые провел их сравнение с ныне живущими. В 1580 году он опубликовал в печати ту мысль, что поскольку всё в природе находится «в вечной трансмутации», то многие ископаемые остатки рыб и моллюсков относятся к вымершим видам.[1]

Эволюционные идеи Нового времени

Как видим, дальше высказывания разрозненных идей об изменчивости видов дело не заходило. Эта же тенденция продолжалась и с наступлением Нового времени. Так Френсис Бэкон, политик и философ предполагал, что виды могут изменяться, накапливая «ошибки природы». Этот тезис снова, как и в случае с Эмпедоклом, перекликается с принципом естественного отбора, но об общей теории нет пока и слова. Как ни странно, но первой книгой об эволюции можно считать трактат Мэтью Хэйла (англ. Matthew Hale) «The Primitive Origination of Mankind Considered and Examined According to the Light of Nature». Странным это может показаться уже потому, что сам Хэйл не был натуралистом и даже философом, это был юрист, богослов и финансист, а свой трактат написал во время вынужденного отпуска в своём поместье. В нём он писал, что не стоит считать будто бы все виды сотворены в их современном форме, напротив, сотворены были лишь архетипы, а всё разнообразие жизни развилось из них под влиянием многочисленных обстоятельств.[7] У Хейла также предвосхещены многие споры о случайности, которые возникли после утверждения дарвинизма. В этом же трактате впервые упоминается термин «эволюция» в биологическим смысле.[1]

Идеи ограниченного эволюционизма, подобные идеям Хэйла, возникали постоянно, их можно найти в трудах Джона Рэя, Роберта Гука, Готфрида Лейбница и даже в поздних работах Карла Линнея. Более ясно они высказаны Жоржем Луи Бюффоном. Наблюдая за осаждением осадков из воды он пришёл к выводу, что 6-ти тысяч лет, которые отводились на историю Земли естественным богословием, недостаточно для формирования осадочных пород. Вычесленный Бюффоном возраст Земли составлял 75 тысяч лет. Описывая виды животных и растений Бюффон заметил, что наряду с полезными признаками у них имеются и такие, которым невозможно приписать какую-либо полезность. Это снова противоречило естественному богословию, которое утверждало, что каждый волосок на теле животного создан с пользой для него или же для человека. Бюффон пришёл к выводу, что это противоречие можно устранить приняв сотворение лишь общего плана, который варьируется в конкретных воплощениях. Приложив лейбницевский «закон непрерывности» к систематике он выступил в 1749 году против существования дискретных видов, считая виды плодом фантазии систематиков (в этом можно видеть истоки его не прекращавшейся полемики с Линнеем и антипатии этих ученых друг к другу).

Теория Ламарка

Шаг к объединению трансформистского и систематического подходов был сделан естествоиспытателем и философом Жаном Батистом Ламарком. Как сторонник изменения видов и деист, он признавал Творца и считал, что Верховный Творец создал лишь материю и природу; все остальные неживые и живые объекты возникли из материи под воздействием природы. Ламарк подчеркивал, что «все живые тела происходят одни от других, при этом не путем последовательного развития из предшествующих зародышей». Таким образом, он выступил против концепции преформизма как автогенетической, а его последователь Этьен Жоффруа Сент-Илер (1772—1844) отстаивал идею о единстве плана строения животных различных типов. С наибольшей полнотой эволюционные идеи Ламарка изложены в «Философии зоологии» (1809), хотя многие положения своей эволюционной теории Ламарк сформулировал во вводных лекциях к курсу зоологии еще в 1800—1802 годах. Ламарк считал, что ступени эволюции не лежат на прямой линии, как это следовало из «лестницы существ» швейцарского натурфилософа Ш. Бонне, а имеют множество ветвей и отклонений на уровне видов и родов. Это представление подготовило почву для будущих «родословных древ». Ламарком был предложен и сам термин «биология» в его современном смысле. Однако в зоологических трудах Ламарка — создателя первого эволюционного учения — содержалось немало фактических неточностей, умозрительных построений, что особенно видно при сравнении его сочинений с трудами его современника, соперника и критика, создателя сравнительной анатомии и палеонтологии Жоржа Кювье (1769—1832). Ламарк считал, что движущим фактором эволюции может быть «упражнение» или «неупражнение» органов, зависящее от адекватного прямого влияния среды. Некоторая наивность аргументации Ламарка и Сент-Илера во многом способствовала антиэволюционной реакции на трансформизм начала XIX в, и вызвала абсолютно аргументированную с фактической стороны вопроса критику со стороны креациониста Жоржа Кювье и его школы.

Катастрофизм и трансформизм

Идеалом для Кювье был Линней. Кювье разделил животных на четыре «ветви», каждая из которых характеризуется общностью плана строения. Для этих «ветвей» его последователь А. Бленвиль предложил понятие типа, полностью соответствовавшее «ветвям» Кювье. Тип – это не просто высший таксон в царстве животных. Между четырьмя выделенными типами животных нет и не может быть переходных форм. Все животные, относящиеся к одному типу, характеризуются общностью плана строения. Это важнейшее положение Кювье крайне существенно и ныне. Хотя количество типов значительно превысило цифру 4, все биологи, говорящие о типе, исходят из фундаментальной идеи, доставляющей немало забот пропагандистам градуализма (постепенности) в эволюции, - идеи об обособленности планов строения каждого из типов. Кювье полностью воспринял линнеевскую иерархичность системы и построил свою систему в виде ветвящегося древа. Но это было не родословное древо, а древо сходства организмов. Как справедливо отмечал А.А. Борисяк, «построив систему на … всестороннем учете сходства и различий организмов, он тем самым открывал двери для эволюционного учения, против которого боролся». Система Кювье была, по-видимому, первой системой органической природы, в которой современные формы рассматривались рядом с ископаемыми. Кювье по праву считается весомой фигурой в становлении палеонтологии, биостратиграфии и исторической геологии как наук. Теоретической основой для выделения границ между слоями стало представление Кювье о катастрофических вымираниях фаун и флор на границах периодов и эпох. Он также разработал учение о корреляциях (курсив Н.Н Воронцова), благодаря которому восстанавливал облик черепа как целого, скелета как целого и, наконец, давал реконструкцию внешнего облика ископаемого животного. Свой вклад в стратиграфию вместе с Кювье внес его французский коллега палеонтолог и геолог А. Броньяр (1770-1847), и, независимо от них, – английский землемер и горный инженер Вильям Смит (1769-1839). Термин учения о форме организмов - морфологии - был введен в биологическую науку Гёте, а само учение возникло в конце XVIII века. Для креационистов того времени понятие о единстве плана строения означало поиск сходства, но не родства организмов. Задача сравнительной анатомии виделась в попытке понять по какому плану творило Верховное Существо все то разнообразие животных, которое мы наблюдаем на Земле. Эволюционная классика называет этот период развития биологии "идеалистической морфологией". Данное направление развивалось и противником трансформизма английским анатомом и палеонтологом Ричардом Оуэном (1804-1892). Кстати, именно он предложил в отношении структур, выполняющих сходные функции применять всем теперь известную аналогию или гомологию, в зависимости от того, относятся ли сравниваемые животные к одному плану строения, или к разным (к одному типу животных или к разным типам).

Эволюционисты — современники Дарвина

Английский лесовод Патрик Мэттью (1790-1874) в 1831 году опубликовал монографию «Строевой корабельных лес и древонасаждение». Явление неравномерного роста одновозрастных деревьев, избирательная гибель одних и выживание других давно были известны лесоводам. Мэттью предположил, что отбор не только обеспечивает выживание наиболее приспособленных деревьев, но и может вести к изменениям видов в процессе исторического развития. Таким образом, борьба за существование и естественный отбор были ему известны. Вместе с тем он считал, что ускорение эволюционного процесса зависит от воли организма (ламаркизм). Принцип борьбы за существование уживался у Мэттью с признанием существования катастроф: после переворотов уцелевают немногочисленные примитивные формы; в отсутствие конкуренции после переворота эволюционный процесс идет высокими темпами. Эволюционные идеи Мэттью в течение трех десятилетий оставались незамеченными. Но в 1868 году, после выхода «Происхождения видов», он републиковал свои эволюционные страницы. После этого Дарвин ознакомился с трудами своего предшественника и отметил заслуги Мэттью в историческом обзоре 3-го издания своего труда.

Чарлз Лайель (1797-1875) – крупная фигура своего времени. Он возвратил к жизни понятие актуализма («Основные начала геологии», 1830-1833), идущего еще от античных авторов, а также от таких весомых в человеческой истории личностей как Леонардо да Винчи (1452-1519), Ломоносова (1711-1765), Джемса Хаттона (Англия, Геттон, 1726-1797) и, наконец, Ламарка. Принятие Лайелем концепции познания прошлого через изучение современности означало создание первой целостной теории эволюции лика Земли. Английский философ и историк науки Вильям Уэвелл (1794-1866) в 1832 году выдвинул термин униформизм применительно к оценке теории Лайеля. Лайель говорил о неизменности действия геологических факторов во времени. Униформизм был полной антитезой катастрофизму Кювье. «Учение Лайеля теперь так же преобладает, - писал антрополог и эволюционист И. Ранке, - как некогда господствовало учение Кювье. При этом нередко забывают, что учение о катастрофах едва ли так долго могло бы давать удовлетворительное схематическое объяснение геологических фактов в глазах лучших исследователей и мыслителей, если бы оно не опиралось на известную сумму положительных наблюдений. Истина и здесь лежит между крайностями теории». Как признают современные биологи «катастрофизм Кювье был необходимым этапом развития исторической геологии и палеонтологии. Без катастрофизма развитие биостратиграфии вряд ли шло бы столь быстро».

Шотландец Роберт Чемберс (1802-1871) – книгоиздатель и популяризатор науки издал в Лондоне «Следы естественной истории творения» (1844), в которой анонимно пропагандировал идеи Ламарка, говорил о длительности эволюционного процесса и об эволюционном развитии от просто организованных предков к более сложным формам. Книга была рассчитана на широкого читателя и за 10 лет выдержала 10 изданий тиражом не менее 15 тыс. экземпляров (что само по себе внушительно для того времени). Вокруг книги анонимного автора разгорелись споры. Всегда весьма сдержанный и осторожный, Дарвин стоял в стороне от развернувшейся в Англии дискуссии, однако внимательно наблюдал за тем, как критика частных неточностей превращается в критику самой идеи об изменяемости видов, чтобы не повторять подобных ошибок. Чемберс, после выхода в свет книги Дарвина сразу встал в ряды сторонников нового учения.

В XX веке вспомнили об Эдварде Блите (1810-1873) – английском зоологе, исследователе фауны Австралии. В 1835 и 1837 гг. он опубликовал в английском «Журнале естественной истории» две статьи, в которых говорил о том, что в условиях жестокой конкуренции и нехватки ресурсов шансы на оставление потомства имеются лишь у сильнейших.

Таким образом, еще до выхода знаменитого труда в свет, всем ходом развития естествознания уже была подготовлена почва для восприятия учения об изменяемости видов и отборе.

Труды Дарвина

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина «Происхождение видов путём естественного отбора или сохранение благоприятных рас в борьбе за жизнь». Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении. Действие отбора приводит к распадению видов на части — дочерние виды, которые, в свою очередь, со временем расходятся до родов, семейств и всех более крупных таксонов.

С присущей ему честностью Дарвин указал на тех, кто непосредственно подтолкнули его к написанию и изданию эволюционного учения (видимо, Дарвин не слишком интересовался историей науки, так как в первом издании «Происхождения видов» он не упоминал о своих непосредственных предшественниках: Уэллсе, Мэттью, Блите). Прямое влияние на Дарвина в процессе создания труда оказали Лайель и в меньшей степени Томас Мальтус (1766-1834), с его геометрической прогрессией численности из демографического труда «Опыт о законе народонаселения» (1798). И, можно сказать, Дарвина «заставил» опубликовать свой труд молодой английский зоолог и биогеограф Альфред Уоллес (1823-1913), отправив ему рукопись, в которой независимо от Дарвина он излагает идеи теории естественного отбора. При этом Уоллес знал, что Дарвин трудится над эволюционным учением, ибо последний сам писал ему об этом в письме от 1 мая 1857 года: «Нынешним летом исполнится 20 лет (!) с тех пор, как я завел свою первую записную книжку по вопросу о том, чем и каким способом разнятся друг от друга виды и разновидности. Теперь я подготовляю мой труд к печати… но не предполагаю печатать его раньше, чем через два года… Право, невозможно (в рамках письма) изложить мои взгляды на причины и способы изменений в естественном состоянии; но я шаг за шагом пришел к ясной и отчетливой идее – верной или ложной, об этом должны судить другие; ибо – увы! – самая непоколебимая уверенность автора теории в своей правоте ни в какой мере не является залогом ее истинности!» Здесь видно здравомыслие Дарвина, а также и джентльменское отношение двух ученых друг к другу, которое ясно прослеживается при анализе переписки между ними. Дарвин, получив статью 18 июня 1858 года, хотел представить ее в печать, умолчав о своей работе, и только по настоятельным уговорам друзей написал «краткое извлечение» из своего труда и эти две работы представил на суд Линнеевского общества.

Дарвин в полной мере воспринял от Лайеля идею постепенности развития и, можно сказать, был униформистом. Может возникнуть вопрос: если все было известно до Дарвина, то в чем же его заслуга, почему именно его работа вызвала такой резонанс? Но Дарвин сделал то, что не смогли сделать его предшественники. Во первых, он дал своей работе очень актуальное название, бывшее «у всех на устах». Общественность испытывала жгучий интерес именно к «Происхождению видов путем естественного отбора или сохранению благоприятствуемых рас в борьбе за жизнь». Трудно припомнить другую книгу в истории мирового естествознания, в названии которой столь же четко была бы отражена ее суть. Может быть, Дарвину и попадались на глаза титульные листы или названия работ его предшественников, но просто не возникло желания ознакомиться с ними. Мы можем только гадать, как бы отреагировала общественность, догадайся Мэттью выпустить свои эволюционные взгляды под заглавием «Возможность изменения видов растений во времени благодаря выживанию (отбору) наиболее приспособленных». Но, как мы знаем «Строевой корабельный лес…» не привлек к себе внимания.

Во вторых, и это самое главное, Дарвин смог объяснить современникам причины изменяемости видов на основе проведенных им наблюдений. Он отверг, как несостоятельное, представление о «упражнении» или «неупражнении» органов и обратился к фактам выведения новых пород животных и сортов растений людьми – к искусственному отбору. Он показал, что неопределенная изменчивость организмов (мутации) передаются по наследству и могут стать началом новой породы или сорта, если то будет полезно человеку. Перенеся эти данные на дикие виды, Дарвин отмечал, что в природе могут сохраняться лишь те изменения, которые выгодны виду для успешной конкуренции с другими, и говорил о борьбе за существование и естественном отборе, которому приписывал важную, но не единственную роль движителя эволюции. Дарвин не только дал теоретические выкладки естественного отбора, но и показал на фактическом материале эволюцию видов в пространстве, при географической изоляции (вьюрки) и с позиций строгой логики объяснил механизмы дивергентной эволюции. Также он ознакомил общественность с ископаемыми формами гигантских ленивцев и броненосцев, что могло рассматриваться как эволюция во времени. Дарвин также допускал возможность длительного сохранения некой усредненной нормы вида в процессе эволюции путем элиминации любых отклоняющихся вариантов (например, выжившие после бури воробьи имели среднюю длину крыла), что позднее было названо стасигенезом. Дарвин смог всем доказать реальность изменчивости видов в природе, поэтому благодаря его работе сошли на нет идеи о строгом постоянстве видов. Статикам и фиксистам было бессмысленным далее упорствовать в своих позициях.

Развитие идей Дарвина

Как истинный приверженец градуализма, Дарвин был обеспокоен тем, что отсутствие переходных форм может явиться крахом его теории, и относил эту нехватку к неполноте геологической летописи. Также Дарвина беспокоила мысль о «растворении» вновь приобретенного признака в ряду поколений, при последующем скрещивании с обычными, не измененными особями. Он писал, что это возражение, наряду с перерывами в геологической летописи, одно из самых серьезных для его теории.

Дарвин и его современники не знали, что в 1865 году австро-чешский естествоиспытатель аббат Грегор Мендель (1822-1884) открыл законы наследственности, по которым наследственный признак, не «растворяется» в ряду поколений, а переходит (в случае рецессивности) в гетерозиготное состояние и может быть размножен в популяционной среде.

В поддержку Дарвина начинают выступать такие ученые, как американский ботаник Аза Грэй (1810-1888); Альфред Уоллес, Томас Генри Гексли (Хаксли; 1825-1895) – в Англии; классик сравнительно анатомии Карл Гегенбаур (1826-1903), Эрнст Геккель (1834-1919), зоолог Фриц Мюллер (1821-1897) – в Германии. С критикой идей Дарвина выступают не менее заслуженные ученые: учитель Дарвина, профессор геологии Адам Седжвик (1785-1873), известнейший палеонтолог Ричард Оуэн, крупный зоолог, палеонтолог и геолог Луи Агассис (1807-1873), немецкий профессор Генрих Георг Бронн (1800-1862).

Один из символов эволюционизма: схема, помещённая на фронтисписе к работе Томаса Хаксли Man’s place in Nature (1863), демонстрирующая сходство скелетов человекообразных обезьян и человека.

Интересен факт того, что книгу Дарвина на немецкий язык перевел именно Бронн, не разделявший его взглядов, но считающий, что новая идея имеет право на существование (современный эволюционист и популяризатор Н.Н. Воронцов отдает в этом должное Бронну, как истинному ученому). Рассматривая взгляды другого противника Дарвина – Агассиса, заметим, что этот ученый говорил о важности сочетания методов эмбриологии, анатомии и палеонтологии для определения положения вида или иного таксона в классификационной схеме. Таким образом, вид получает свое место в естественном порядке мироздания. Любопытно было узнать, что горячий сторонник Дарвина – Геккель широко пропагандирует постулированную Агассисом триаду, «метод тройного параллелизма» уже применительно к идее родства и она, подогретая личным энтузиазмом Геккеля, захватывает современников. Все сколько-нибудь серьезные зоологи, анатомы, эмбриологи, палеонтологи принимаются строить целые леса филогенетических древ. С легкой руки Геккеля распространяется как единственно возможная идея монофилии – происхождения от одного предка, которая безраздельно господствовала над умами ученых и в середине XX века. Современные эволюционисты, основываясь на изучении отличного от всех других эукариот способа размножения водорослей Rhodophycea (неподвижная и мужская и женская гаметы, отсутствие клеточного центра и каких-либо жгутиковых образований) говорят по крайней мере о двух независимо образовавшихся предках растений. Одновременно выяснили, что «Возникновение митотического аппарата происходило независимо по крайней мере дважды: у предков царств грибов и животных, с одной стороны, и в подцарствах настоящих водорослей (кроме Rhodophycea) и высших растений – с другой» (точная цитата, стр. 319). Таким образом, признается происхождение жизни не от одного праорганизма, а по крайней мере от трех. Во всяком случае, отмечается что, уже «ни одна другая схема, как и предложенная, не может оказаться монофилитической» (там же). К полифилии (происхождению от нескольких, не связанных родством организмов) ученых привела и теория симбиогенеза, объясняющая появление лишайников (соединение водоросли и гриба) (стр. 318). И это – самое главное достижение теории. Кроме того, новейшие исследования говорят о том, что находят все больше примеров, показывающих «распространенность парафилии и в происхождении относительно близкородственных таксонов». Например, у «подсемейства африканских древесных мышей Dendromurinae: род Deomys молекулярно близок к настоящим мышам Murinae, а род Steatomys по структуре ДНК близок к гигантским мышам подсемейства Cricetomyinae. Вместе с тем морфологическое сходство Deomys и Steatomys несомненно, что говорит о парафилитическом происхождении Dendromurinae». Поэтому филогенетическая классификация нуждается в пересмотре, уже на основании не только внешнего сходства, но и строения генетического материала (стр. 376). Экспериментальный биолог и теоретик Август Вейсман (1834-1914) в достаточно четкой форме говорил о клеточном ядре как о носителе наследственности. Независимо от Менделя он пришел к важнейшему выводу о дискретности наследственных единиц. Мендель настолько опередил свою эпоху, что его работы фактически оставались безвестными в течение 35 лет. Идеи Вейсмана (где-то после 1863 года) стали достоянием широких кругов биологов, предметом для дискуссий. Увлекательнейшие страницы зарождения учения о хромосомах, возникновение цитогенетики, создание Т.Г. Морганом хромосомной теории наследственности в 1912-1916 гг. – все это в сильнейшей степени было стимулировано Августом Вейсманом. Исследуя зародышевое развитие морских ежей, он предложил различать две формы деления клеток – экваториальное и редукционное, т.е. подошел к открытию мейоза – важнейшего этапа комбинативной изменчивости и полового процесса. Но Вейсман не смог избежать некоторой умозрительности в своих представлениях о механизме передачи наследственности. Он думал, что весь набор дискретных факторов – «детерминантов» - имеют лишь клетки т.н. «зародышевого пути». В одни из клеток «сомы» (тела) попадают одни детерминанты, в другие – иные. Различия в наборах детерминант объясняют специализацию клеток сомы. Итак, мы видим, что, справедливо предсказав существование мейоза, Вейсман ошибся в предсказании судьбы распределения генов. Он также распространил принцип отбора на соревнование меду клетками, и, поскольку клетки есть носители тех или иных детерминант, говорил о их борьбе между собой. Самые современные концепции «эгоистической ДНК», «эгоистического гена», развитые на рубеже 70-х и 80-х гг. ХХ в. во многом перекликаются с вейсмановской конкуренцией детерминант. Вейсман делал акцент на том, что «зародышевая плазма» обособлена от клеток сомы всего организма, и потому говорил о невозможности наследования приобретенных организмом (сомой) признаков под действием среды. Но многие дарвинисты принимали эту идею Ламарка. Жесткая критика Вейсмана этой концепции вызвало лично к нему и его теории, а затем и вообще к изучению хромосом негативное отношение со стороны ортодоксальных дарвинистов (тех, кто признавал отбор единственным фактором эволюции).

Переоткрытие законов Менделя произошло в 1900 году в трех разных странах: Голландии (Гуго де Фриз 1848-1935), Германии (Карл Эрих Корренс 1864-1933) и Австрии (Эрих фон Чермак 1871-1962), которые одновременно обнаружили забытую работу Менделя. В 1902 году Уолтер Саттон (Сетон, 1876-1916) дал цитологическое обоснование менделизму: диплоидный и гаплоидный наборы, гомологичные хромосомы, процесс конъюгации при мейозе, предсказание сцепления генов, находящихся в одной хромосоме, понятие о доминантности и рецессивности, а также аллельные гены – все это демонстрировалось на цитологических препаратах, основывалось на точных расчетах менделеевской алгебры и очень отличалось от гипотетических родословных древ, от стиля натуралистического дарвинизма XIX века. Мутационная теория де Фриза (1901-1903 гг.) не была принята не только консерватизмом ортодоксальных дарвинистов, но и тем, что на других видах растений исследователям не удавалось получить достигнутый им на Oenothera lamarkiana широкий спектр изменчивости (сейчас известно, что энотера – полиморфный вид, имеющий хромосомные транслокации, часть которых гетерозиготна, тогда как гомозиготы летальны. Де Фриз выбрал очень удачный объект для получения мутаций и одновременно не совсем удачный, так как в его случае требовалось распространить достигнутые результаты на другие виды растений). Де Фриз и его русский предшественник ботаник Сергей Иванович Коржинский (1861-1900), писавший в 1899 году (Петербург) о внезапных скачкообразных «гетерогенных» отклонениях, думали, что возможность проявления макромутаций отвергает дарвиновскую теорию. На заре становления генетики высказывалось немало концепций, согласно которым эволюция не зависела от внешней среды. Под критику дарвинистов попал и нидерландский ботаник Ян Паулус Лотси (1867-1931), написавший книгу «Эволюция путем гибридизации», где справедливо обратил внимание на роль гибридизации в видообразовании у растений.

Если в середине XVIII века казалось непреодолимым противоречие между трансформизмом (непрерывным изменением) и дискретностью таксономических единиц систематики, то в XIX веке думалось, что градуалистические древа, построенные на основе родства вошли в противоречие с дискретностью наследственного материала. Эволюция путем визуально различимых крупных мутаций не могла быть принята градуализмом дарвинистов.

Доверие к мутациям и их роли в формировании изменчивости вида вернул Томас Гент Морган (1886-1945), когда этот американский эмбриолог и зоолог в 1910 году перешел к генетическим исследованиям и, в конце концов, остановил свой выбор на знаменитой дрозофиле. Наверно, не стоит удивляться, что через 20-30 лет после описываемых событий именно популяционные генетики пришли к эволюции не через макромутации (что стало признаваться маловероятным), а через неуклонное и постепенное изменение частот аллельных генов в популяциях. Так как макроэволюция к тому времени представлялась бесспорным продолжением изученных явлений микроэволюции, постепенность стала казаться неотделимой чертой эволюционного процесса. Произошел на новом уровне возврат к лейбницевскому «закону непрерывности» и в первой половине XX века смог произойти синтез эволюции и генетики. В очередной раз соединились некогда противоположные концепции. (имена, выводы эволюционистов и хронология событий взяты из Николай Николаевич Воронцов, "Развитие эволюционных идей в биологии, 1999)

Напомним, что в свете новейших биологических идей, выдвинутых с позиций материализма, сейчас опять происходит отдаление от закона непрерывности, теперь уже не генетиков, а самих эволюционистов. Известный С.Дж. Гулд поднял вопрос о пунктуализме (прерывистом равновесии), в противовес общепринятому градуализму, чтобы стало возможным объяснить причины уже очевидной для всех картины отсутствия среди ископаемых останков переходных форм, т.е. невозможности построить действительно непрерывную линию родства от истоков до современности. Всегда остается перерыв в геологической летописи.

Современные теории биологической эволюции

В середине XX века на основе теории Дарвина сформировалась синтетическая теория эволюции (сокращённо СТЭ). СТЭ является в настоящее время наиболее разработанной системой представлений о процессах видообразования. Основой для эволюции по СТЭ является динамика генетической структуры популяций. Основным движущим фактором эволюции считается естественный отбор. Однако, наука не стоит на месте и, достигнутые передовыми теоретическими разработками современнейшие положения отличаются от первоначальных постулатов синтетической теории эволюции. Существует также группа эволюционных представлений, согласно которым видообразование (ключевой момент биологической эволюции) происходит быстро — за несколько поколений. При этом влияние каких-либо длительно действующих эволюционных факторов исключается (кроме отсекающего отбора). Подобные эволюционные воззрения называются сальтационизмом. Сальтационизм является слабо разработанным направлением в теории эволюции. Показано, что видообразование у растений на основе полиплоидии носит сальтационный характер.

Синтетическая теория эволюции

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера (19181930), Дж. Б. С. Холдейна-младшего (1924), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Нейтральная теория молекулярной эволюции

Теория нейтральной эволюции, основным разработчиком которой является Мотоо Кимура, предполагает, что в эволюции важную роль играют случайные мутации, не имеющие приспособительного значения. В частности, в небольших популяциях естественный отбор, как правило, не играет решающей роли. Теория нейтральной эволюции хорошо согласуется с фактом постоянной скорости закрепления мутаций на молекулярном уровне, что позволяет, к примеру, оценивать время расхождения видов.

Теория нейтральной эволюции не оспаривает решающей роли естественного отбора в развитии жизни на Земле. Дискуссия ведётся касательно доли мутаций, имеющих приспособительное значение. Большинство биологов признают ряд результатов теории нейтральной эволюции, хотя и не разделяют некоторые сильные утверждения, первоначально высказанные М. Кимурой.

Эпигенетическая теория эволюции

Основные положения эпигенетической теории эволюции были сформулированы в 1987-ом году М. А. Шишкиным на основе идей И. И. Шмальгаузена и К. Х. Уоддингтона.[8] В качестве основного субстрата естественного отбора теория рассматривает целостный фенотип, причём отбор не только фиксирует полезные изменения, но и принимает участие в их создании. Основополагающее влияние на наследственность оказывает не геном, а эпигенетическая система (ЭС) — совокупность факторов, воздействующих на онтогенез. От предков к потомкам передаётся общая организация ЭС, которая и формирует организм в ходе его индивидуального развития, причём отбор ведёт к стабилизации ряда последовательных онтогенезов, устраняя отклонения от нормы (морфозы) и формируя устойчивую траекторию развития (креод). Эволюция же по ЭТЭ заключается в преобразовании одного креода в другой при возмущающем воздействии среды. В ответ на возмущение ЭС дестабилизируется, в результате чего становится возможным развитие организмов по отклоняющимся путям развития, возникают множественные морфозы. Некоторые из этих морфозов получают селективное преимущество, и в течение последующих поколений их ЭС вырабатывает новую устойчивую траекторию развития, формируется новый креод.

Экосистемная теория эволюции

Под этим термином понимают систему представлений и подходов к исследованию эволюции, акцентирующих внимание на особенностях и закономерностях эволюции экосистем различного уровня - биоценозов, биомов и биосферы в целом, а не таксонов (видов, семейств, классов и т.д.). Положения экосистемной теории эволюции базируются на двух постулатах:

  •  Естественность и дискретность экосистем. Экосистема - реально существующий (а не выделенный для удобства исследователя) объект, представляющий собой территориально и функционально отграниченную от других подобных объектов систему взаимодействующих биологических и небиологических (напр. почва, вода) объектов. Границы между экосистемами достаточно четкие для того, чтобы можно было говорить о независимой эволюции соседних объектов.
  •  Определяющая роль экосистемных взаимодействий в определении скорости и направлении эволюции популяции. Эволюция рассматривается как процесс создания и заполнения экологических ниш или лицензий.

Экосистемная теория эволюции оперирует такими терминами как когерентная и некогерентная эволюция, экосистемные кризисы различного уровня. Современная экосистемная теория эволюции базируется, в основном, на работах советских и российских эволюционистов: В. А. Красилова, С. М. Разумовского, А. Г, Пономаренко, В. В. Жерихина и др.

Эволюционное учение и религия

Хотя в современной биологии остаётся много неясных вопросов о механизмах эволюции, подавляющее большинство биологов не сомневается в существовании биологической эволюции как феномена. Тем не менее, часть верующих ряда религий находят некоторые положения эволюционной биологии противоречащими их религиозным убеждениям [9], в частности, догмату о сотворении мира Богом. В связи с этим в части общества практически с момента зарождения эволюционной биологии существует определённая оппозиция этому учению с религиозной стороны (см. креационизм), доходившая в некоторые времена и в некоторых странах до уголовных санкций за преподавание эволюционного учения (ставших причиной, например, скандального известного «обезьяньего процесса» в США в 1925 г.).

Следует отметить, что обвинения в атеизме и отрицании религии, приводимые некоторыми противниками эволюционного учения, основаны в известной мере на непонимании природы научного знания: в науке никакая теория, в том числе и теория биологической эволюции, не может как подтвердить, так и отрицать существование таких потусторонних миру субъектов, как Бог (хотя бы потому, что Бог при творении живой природы мог использовать эволюцию, как утверждает богословская доктрина «теистической эволюции»).

С другой стороны, теория эволюции, будучи научной теорией, рассматривает биологический мир как часть материального мира и полагается на естественное и самодостаточное, т. е. закономерное его происхождение, чуждое, следовательно, какому-либо потустороннему или божественному вмешательству; чуждое по той причине, что рост научного знания, проникающего в ранее непонятное и объяснимое только деятельностью потусторонних сил, как-бы отбивает почву у религии (при объяснении сути феномена пропадает нужда в религиозном объяснении, потому как есть убедительное естественное объяснение). В этом плане эволюционное учение может быть нацелено на отрицание существования внеприродных сил, а точнее их вмешательства в процесс развития живого мира, что так или иначе предполагают религиозные системы.

Ошибочны также попытки противопоставить эволюционную биологию религиозной антропологии. С точки зрения методологии науки, популярный тезис «человек произошёл от обезьяны» является лишь чрезмерным упрощением (см. редукционизм) одного из выводов эволюционной биологии (о месте человека как биологического вида на филогенетическом древе живой природы) хотя бы потому, что понятие «человек» многозначно: человек как предмет физической антропологии отнюдь не тождествен человеку как предмету философской антропологии

, и сводить философскую антропологию к физической некорректно. 

Многие верующие разных религий не находят эволюционное учение противоречащим их вере. [10] Теория биологической эволюции (наряду со многими другими науками — от астрофизики до геологии и радиохимии) противоречит только буквальному прочтению сакральных текстов, повествующих о сотворении мира, и для некоторых верующих это является причиной отвержения практически всех выводов естественных наук, изучающих прошлое материального мира (буквалистский креационизм).

Среди верующих, исповедующих доктрину буквалистского креационизма, имеется некоторое количество учёных, которые пытаются найти научные доказательства своей доктрине (так называемый «научный креационизм»). Тем не менее, научное сообщество оспаривает обоснованность этих доказательств [11].

10. к списку вопросов

Онтогене́з (от греч. οντογένεση: ον — существо и γένεση — происхождение, рождение) — индивидуальное развитие организма от оплодотворения до смерти.

У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.

У многоклеточных растений к эмбриональному развитию относят процессы, происходящие в зародышевом мешке семенных растений.

Термин «онтогенез» впервые был введен Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.

Онтогенез делится на два периода:

  1.  эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;

Эмбриональный период

В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез. Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.

Дробление

Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то-есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).

Гаструляция — процесс разделения зародыша на зародышевые листки. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.

Первичный органогенез

Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.

В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.

Постэмбриональное развитие

Постэмбриональное развитие бывает прямым и непрямым.

  1.  Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.
  2.  Непрямое развитие, или развитие с метаморфозом — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.

Постэмбриональное развитие сопровождается ростом.

Филогене́з (от греческого phylos — племя, раса и geneticos — имеющий отношение к рождению) — историческое развитие организмов. В биологии филогенез рассматривает развитие биологического вида во времени. Таксономия, классификация организмов по сходству, основана на филогенезе, но методологически отличается от филогенетического представления организмов.

Филогенез рассматривает эволюцию в качестве процесса, в котором генетическая линия — организмы от предка к потомкам — разветвляется во времени, и её отдельные ветви могут специализироваться относительно общего предка, сливаться в результате гибридизации или исчезать в результате вымирания.

11.

 




1. нулевой азотистый баланс суточное количество выведенного из организма азота соответствует количеству ус
2. это постоянный процесс обеспечивающий достижение целей организации путем своевременного обнаружения возн
3. а. Четвертичная структура белков
4. Маленький принц
5. Реферат- Поліграфічний синтез кольорових зображень
6. Юг; проблема бедности; продовольственная проблема; энергетическая проблема; проблема экологии
7. Университет Туран Факультет АКТ Кафедра компьютерная и программная инженерия
8. 14 д 1 минимум ~ 4 2 минимум
9. тематические и поурочные планы провела психологопедагогическое изучение учащихся с помощью наблюдения бе
10. XX вв. особенности генезиса гражданского общества были проанализированы М
11. О несостоятельности банкротстве действие которого распространяется на все юридические лица за исключен
12. Реферат- Самоконтроль занимающихся физическими упражнениями и спортом
13. com-booksource Джейми Макгвайр Провидение Легенда об ангеле 1 Аннотация Юная Нина
14. Реферат- Государственный и правовой строй Древней Греции
15. Бухгалтерский учёт в ССС
16. Шрифты
17. з курсу- ldquo;Основи економічної теоріїrdquo; Рекомендовано Вченою радою НПУ імені М
18. Жизнь с гаремом
19. Однако в первую очередь призыву подлежат граждане старших призывных возрастов которые не имеют права на от
20. Институт БелНИИС