Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

3107 рублей Если целью использования является выбор программы с минимальными затратами то наиболее желате

Работа добавлена на сайт samzan.ru: 2015-07-10


  1.  . Функция полезности при наличии риска

Выше было сказано, что одним из важнейших факторов, учитываемых в процессе принятия решения, являются финансовые затраты. Выберем их в качестве показателя некоторой системы и сформулируем задачу выбора следующим образом:

необходимо определить программу действий при наличии риска в расходовании средств, который обусловлен возможностью получения нескольких результатов при осуществлении принятого решения.

Пусть возможный диапазон затрат на осуществление программы составляет 2107 - 3107 рублей. Если целью использования является выбор программы с минимальными затратами, то наиболее желательному случаю будут соответствовать затраты, составляющие 2107 рублей, а наименее желательному -3107 рублей. Здесь мы поступаем так же, как и при формировании функции полезности, или целевой функции  в условиях определенности. Принимаем полезность  при затратах 2107 – u2 = 1, а полезность при 3107 – u2 = 0.

Чтобы определить полезность решения для промежуточных затрат, используем следующий постулат:

если результат Ri имеет осуществления pi, то полезность решения при наличии риска определяется средним значением полезности (математическим ожиданием):

                                   ,       (1)

где ui – полезность результата Ri.

Рассмотрим ситуацию, когда надо выбрать из двух событий (это может быть, например, выбор между вариантами страховки или программами развития района), каждое из которых может привести к тем или иным затратам, величина которых носит вероятностный характер:

и .

Если группа лиц с общими интересами не отдает предпочтения ни одному из двух событий, то это означает, что (u1) = (u2) , где  (u1) - средняя полезность события 1, а (u2)  - средняя полезность результата 2.

Из этого условия можно определить полезность каждого из возможных результатов Ri. Пусть, например, событие 1 представляет собой затраты либо в сумме 2107 руб. с вероятностью р, либо в сумме 3107 с вероятностью 1-р. Тогда

             (u1) = pu2 + (1-p)u2                         (2)

Так как  = 1 и  = 0, получим (u1) = р.

Пусть событие 2 представляет собой затраты в 2,7107 руб. с вероятностью 1, то

            (u2) = 2,7107.

Условие отсутствия предпочтительности при выборе между событиями 1 и 2 записывается как (u1) = (u2), тогда получим, что u8,5 = р.

Из этого следует, что если можно найти такое значение р, при котором группа с общими интересами не отдает предпочтения ни одному из событий 1 или 2, то можно сказать, что полезность затрат в 2,7107 равна р.

Рис.2. Кривые полезности, характеризующие различное отношение к5 риску консервативного руководителя (1) и руководителя, склонного к риску (2).

Рис.1. Зависимость полезности от расходов для групп лиц, не склонных к риску (А), и для группы лиц, безразличной к риску (В).

Однако соответствующая шкала фактической стоимости реализации программы не обязательно будет прямо пропорциональна расходам.

Предположим, например, что принятое решение с одинаковой 50-%-й вероятностью может потребовать затрат в 2107 руб. и в 3107 руб. Если средние значения полезностей двух решений равны и, следовательно, эти решения эквивалентны, то при линейной зависимости между полезностью и затратами приемлемое решение было бы связано с определенной суммой затрат равной 2,5107 руб., которая реализуется с вероятностью, равной 1. Однако, чтобы избежать максимальных затрат в сумме 3107 руб., вероятность которых составляет 50%, некоторая группа лиц с общими интересами, скорее согласится на строго установленные затраты в 2,7107 руб. Это характерно для лиц, не желающих рисковать и готовых уплатить несколько больше, чем приемлемо для всей группы, чтобы избежать более нежелательного исхода. При этом полезность u2,7 оценивалась бы как 0,5, поскольку

  (u) =0,5u2 +0,5u3 = 0,5 (1) + 0,5 (0) = 0,5  = u2,8.

На рис.1 показаны кривые полезностей, отражающие разное отношение людей к риску. (Знак минус перед числами означает, что рассматриваются затраты, а не прибыль). Промежуточные точки кривой А можно рассчитать тем же методом, который использовался для оценки u2,7, т.е. путем приравнивания средних значений (u) для случая известных значений полезностей и случая известного результата при неизвестном значении полезности. Лицо, которое избегает риска, потребовало бы «разницу» возможных полезностей в свою пользу, и поэтому рискованной ситуации предпочитает вполне определенную (кривая А). Кривая В отражает линейную зависимость полезности от затрат, характерную для группы лиц, которые к риску относятся с безразличием.

На рис.2 показаны кривые полезностей для двух предпринимателей, один из которых склонен к риску (2), а другой – осторожный и консервативный (1).

Постулаты теории полезности. Рассмотренный выше метод основан на некоторых постулатах, которые можно назвать постулатами теории полезности. Для ряда вероятных событий А, В, С они сводятся к следующим.

1) условие транзитивности: если А > В (т.е. А предпочтительнее, чем В, и В > С, то А > С    и  если А = В (т.е. А эквивалентно В), и В = С, то А = С;

2) случайное событие предпочтительнее других только в том случае, когда вероятность связанного с ним более желательного результата выше, чем вероятность менее желательного результата;

3) при выборе решения может быть учтен дополнительный риск; это относится, например, к ситуации, когда событие А происходит с вероятностью р, а с вероятностью 1-р происходит либо событие В с вероятностью р, либо событие С  вероятностью 1-р.

Другими словами,

эквивалентно

4) если событие В по предпочтительности занимает промежуточное место между событиями А и С, то можно установить соотношение эквивалентности между событиями А или С; это означает, что если А>B>C, то существует такая вероятность р при  0 р 1, что

B [p, A; (1-p), C].

На основе этих четырех постулатов для некоторой переменной может быть определена единственная функция полезности, которая должна удовлетворять следующим условиям:

если А > В, то и u(A) > u(B), т.е. полезность события А больше чем полезность события В, когда А предпочтительнее В.




1. Либерализм в России основные этапы, идеи, особенности и перспективы
2. лекция 1 Основы общей и специальной физической подготовки
3. Помимо хромосомы в генофонд которым фактически располагает клетка входит и внехромосомная ДНК т
4. Опыт использования репертуарных решеток Дж
5. Утверждаю Декан факультета Ф В
6. Тема- Програма кафе
7. Тарас Бульба Гоголя и нравоописательное содере История одного города СЩ
8. Школьные неврозы и причины их возникновения
9. Коррозия металлов
10. Сравнительный анализ развития государственности в Афинах и Спарте
11. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата архітектури Харків ~
12. тема координат основание системы счисления и правил конструирования информационных образов на этой основ
13. Психофизиология ощущения и восприятия
14. Расчет каскадов ЧМ передатчика
15. Направления психологической теории
16. Становление и развитие политологии как науки и учебной дисциплины
17. ТЕМА СПЕЦИФИКА ПРОСТРАНСТВЕННОВРЕМЕННОЙ ОРГАНИЗАЦИИ ГЕОГРАФИЧЕСКИХ СИСТЕМ Научный ру
18. Российский государственный профессиональнопедагогический университет Машиностроительный институт К
19. рефератов для электива Проблемы переходной экономики Актуальные экономические проблемы
20. Introduction Red this true story bout n mericn tourist in Britin