Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

Лабораторная работа 10 исследование опасности поражения током в трехфазных электрических сетях напряже

Работа добавлена на сайт samzan.ru: 2015-07-05

Акция
Закажите работу сегодня со скидкой до 5%
Бесплатно
Узнать стоимость работы
Рассчитаем за 1 минуту, онлайн

Лабораторная работа № 10

исследование опасности поражения током

в трехфазных электрических сетях напряжением

до 1000 В

Цель работы: исследовать степень опасности поражения электрическим током в трехфазных сетях напряжением до 1000 В;  ознакомиться с факторами, влияющими на опасность поражения человека электрическим током; исследовать эффективность защитного заземления и зануления.

Приборы и оборудование: лабораторный стенд ОТ 10.

1. Общие положения

Электрические установки, с которыми приходится иметь дело практически всем работающим на производстве, представляют потенциальную опасность. Опасность эксплуатации электроустановок состоит в том, что токоведущие проводники (или корпуса машин, оказавшиеся под напряжением в результате повреждения изоляции) не подают сигналов опасности, на которые реагирует человек. Реакция человека на электрический ток возникает лишь после его прохождения через ткани.

Статистика электротравматизма показывает, что до 85 % смертельных поражений людей электрическим током приходится в результате прикосновения пострадавшего непосредственно к токоведущим частям, находящимся под напряжением. При этом в сетях с номинальным напряжением до 1000 В величина тока, протекающего через человека, а следовательно, и опасность поражения зависит от условий включения человека в электрическую цепь и характеристики сети (режима нейтрали).

В зависимости от режима нейтрали и наличия нулевого провода различают следующие трехфазные сети (рис. 10.1): а) трехпроводные с изолированной нейтралью; б) трехпроводные с заземленной нейтралью; в) четырехпроводные с изолированной нейтралью; г) четырехпроводные с заземленной нейтралью.

а                      б                     в                      г

Рис.10.1. Конструктивное исполнение трехфазной электрической сети

Правилами устройства электроустановок (ПУЭ) предусмотрено применение при напряжениях до 1000 В лишь двух сетей: трехпроводной с изолированной нейтралью и четырехпроводной с заземленной нейтралью. Две другие электрические сети практически применяются очень редко.

При двухфазном включении (рис. 10.2), независимо от вида сетей, человек попадает под полное линейное напряжение сети и величина тока, проходящего через тело человека, определяется по формуле

Jчел= Uл / Rчел ,                                    (10.1)

где Uл – линейное напряжение сети, В; Rчел – условное сопротивление тела человека, 1000 Ом.

Рис.10.2. Схема двухфазного включения человека в электрическую сеть

При однофазном включении в сеть с изолированной нейтралью (рис.10.3а) величина тока, проходящего через человека, определяется по формуле

,                             (10.2)

где Rиз – сопротивление изоляции фаз, Ом; Uл – линейное напряжение, В.

Условия безопасности в этом случае находятся в прямой зависимости от сопротивления изоляции фаз относительно земли: чем лучше изоляция, тем меньше ток, протекающий через человека. Однако в аварийном режиме, когда одна из фаз замыкает на землю или корпус оборудования (рис.10.3б) или сопротивление изоляции мало, человек может оказаться под полным линейным напряжением.

а                                        б

Рис. 10.3. Схема однофазного включения в сеть с изолированной

нейтралью:

а) при хорошей изоляции; б) при аварийном режиме

В этом случае через человека пройдет ток, определяемый по формуле 10.1.

При однофазном включении в сетях с заземленной нейтралью (рис. 10.4) человек попадает под фазное напряжение независимо от величины сопротивления изоляции фаз.

Величина тока, проходящего через человека, в этом случае определяется по формуле

Jчел= Uф / RчелRобRпRо,                         (10.3)

где Uф – фазное напряжение, В; Rоб – сопротивление обуви, Ом; Rп – сопротивление пола, Ом; Rо – сопротивление заземления нейтрали, Ом.

Рис.10.4. Схема однофазного включения в сетях с заземленной

нейтралью

Таким образом, при прочих равных условиях однофазное включение человека в сеть с изолированной нейтралью менее опасно, чем в сеть с заземленной нейтралью. В случае аварии, когда одна из фаз замкнута на землю или сопротивление изоляции проводов мало, сеть с изолированной нейтралью может оказаться более опасной, так как в этом случае напряжение между фазой и землей в сети с изолированной нейтралью может возрасти с фазного до линейного.

Для предотвращения поражений человека электрическим током при прикосновении к нетоковедущим частям, оказавшимся в результате аварии под напряжением, применяют различные меры защиты: защитное заземление, зануление, защитное отключение и выравнивание потенциалов.

В сетях с напряжением до 1000 В с изолированной нейтралью применяется защитное заземление (рис. 10.5).

Рис. 10.5. Схема защитного заземления оборудования

Ток замыкания на землю в таких сетях на превышает 10 А.

В соответствии с ПУЭ сопротивление заземления не должно превышать 4 Ом. Напряжение, под которое может попасть человек в результате замыкания на корпус, определяется по формуле

U= JзамRз,                                        (10.4)

где Jзам – ток замыкания на землю, А; Rз –сопротивление заземляющего устройства, Ом.

В сетях с глухозаземленной нейтралью (рис. 10.6) заземление как средство защиты не применяется.

Рис.10.6. Схема заземления оборудования в сети

с глухозаземленной нейтралью

В этих сетях напряжение замкнувшей фазы распределяется между сопротивлениями заземления нейтрали и заземления оборудования. Отсюда напряжение на заземленном оборудовании относительно земли зависит только от соотношения этих сопротивлений:

,                                       (10.5)

где Rз – сопротивление заземления оборудования, Ом; Rо – сопротивление заземления нейтрали, Ом.

Если Rз = Rо, то U = 0,5 Uф, В.

Следовательно, защитное заземление оборудования в сети с глухозаземленной нейтралью безопасность не обеспечивает. Поэтому на практике такие сети не применяются.

Для защиты от поражения электрическим током в сетях с глухозаземленной нейтралью применяется зануление (рис.10.7).

Занулением называется преднамеренное соединение металлических частей, корпусов оборудования, аппаратов, приборов, нормально не находящихся под напряжением, с нулевым проводом.

Рис. 10.7. Схема зануления оборудования

Основная задача зануления состоит в том, чтобы превратить замыкание фазы на корпус в однофазное короткое замыкание и вызвать тем самым отключение поврежденного оборудования от сети. В течение всего времени, пока не сгорел предохранитель или не сработал автомат защиты, замыкание на один зануленный корпус (рис.10.8) вызывает на всем зануленном оборудовании напряжение (относительно земли), опасное для человека, которое определяется по формуле

,                  (10.6)

где Jк.з– ток короткого замыкания, А; Rф  – сопротивление фазного провода, Ом; Rн – сопротивление нулевого провода, Ом;

При отношении 0,5, согласно ПУЭ, Uк =  = 146 В.

Рис. 10.8. Схема замыкания фазы на корпус зануленного оборудования

Безопасность может быть достигнута лишь при весьма кратковременном действии тока, т.е. при быстром срабатывании защиты.

Допустимые значения тока, протекающего через тело человека, и напряжения, приложенного к телу человека, в зависимости от времени действия даны в табл. 10.1.

Таблица 10.1

Зависимость допустимых значений напряжения электрического тока, приложенного к телу человека, от времени его воздействия

Время воздействия, с

0,05

0,1

0,2

0,5

1,0

2,0

3,0

Допустимые напряжения, В

160

120

110

90

80

60

50

2.Экспериментальная часть

2.1. Характеристика лабораторного стенда ОТ 10

Исследования степени опасности поражения человека электрическим током проводятся на лабораторном стенде ОТ 10, принципиальная схема которого приведена на рис. 10.9.

Рис.10.9. Пульт управления стендом

Стенд позволяет моделировать две исследуемые трехфазные сети с изолированной нейтралью и четырехпроводную сеть с глухозаземленной нейтралью. При этом существующие в реальных сетях распределенные сопротивления изоляции и емкости проводов по отношению к земле заменены в схеме стенда сосредоточенными сопротивлениями (RА, RВ, RС, RN ) и емкостями (СА, СВ, СС, СN). Сопротивления и емкости проводов можно изменять с помощью регулируемых резисторов и конденсаторов, что дает возможность имитировать на стенде каждую из исследуемых сетей с нужными параметрами.

2.2. Порядок выполнения работы

2.2.1. Исследование сети с изолированной нейтралью

и определение эффективности защитного заземления

1. Все переключатели стенда (В1, В2, В3, В4, В5, В6, В7) (рис. 10.9) установить в положение "Откл." (вниз).

Переменные резисторы Rф, имитирующие сопротивление фаз относительно земли, установить в крайнее правое положение до упора поворотом по часовой стрелке, что соответствует максимальной изоляции фаз от земли и друг от друга. Резисторы, имитирующие емкость фаз Сф, повернуть влево до упора, что соответствует минимальной емкости цепи (цепи небольшой протяженности, минимум ответвлений). Этим самым моделируется трехфазная трехпроводная сеть с изолированной нейтралью (рис. 10.10).

Рис.10.10. Трехфазная трехпроводная сеть с изолированной нейтралью

2. Подать в сеть напряжение. Для этого переключатель В1 поставить в положение "Сеть". Подачу напряжения контролировать по сигнальным лампам, включенным в соответствующие фазы (А, В, С).

3. Определить напряжение фаз относительно земли. Для этого гнездо вольтметра 11 соединить с землей (гнездо 2), а гнездо вольтметра 12 поочередно с фазами (гнезда 3, 4, 5). Записать показания вольтметра, как и последующие показания, в табл. 10.2.

4. Определить напряжение на корпусе оборудования (корп.1) относительно земли при нормальном режиме работы. Для этого гнездо вольтметра 11 соединить с землей (гнездо 2), а гнездо вольтметра 12 с гнездом 9.

Рассчитать ток, протекающий через человека при прикосновении к корпусу оборудования, работающего в нормальном режиме, по формуле

Jчел = U / Rчел .                                   (10.7.)

Расчетное сопротивление тела человека принять в 1000 Ом. Величина тока, смертельная для человека, 0,1 А. Сделать вывод об опасности поражения.

5. Измерить напряжение на корпусе оборудования 1 относительно земли при замыкании одной из фаз на корпус. Для этого гнездо 7 соединить с гнездом 8. Гнездо 11 вольтметра соединить с гнездом 2, а гнездо 12 – с гнездом 9 корп. 1. Переключатель В4 поставить в положение А. Нажав кнопку "Кн1", замкнуть фазу А на корпус оборудования (корп.1). Одновременно записать показания вольтметра.

Рассчитать ток, протекающий через человека при прикосновении к корпусу оборудования в этом случае, по формуле (10.7). Сделать вывод об опасности поражения.

6. Выяснить влияние сопротивления изоляции фаз на величину напряжения на корпусе. Для этого, не меняя предыдущих соединений, нажатием кнопки "Кн1" замкнуть фазу А на корпус оборудования (корп.1). Одновременно, вращая против часовой стрелки резистор Rф, имитирующий сопротивление фазы В, проследить за изменением напряжения на корпусе оборудования. Записать максимальное напряжение. Вернуть резистор фазы В в крайнее правое положение.

Рассчитать ток, протекающий через человека в этом случае по формуле (10.7). Сделать вывод об опасности поражения при изменении сопротивления фаз относительно земли.

7. Выяснить влияние емкости фаз на величину напряжения на корпусе при пробое одной из фаз на корпус. Для этого, не меняя предыдущих соединений, нажать кнопку "Кн1", замкнуть фазу А на корпус оборудования (корп.1). Одновременно, вращая по часовой стрелке резистор, имитирующий емкость Сф фазы В, проследить за изменением напряжения на корпусе оборудования. Записать максимальное напряжение. Вернуть резистор, имитирующий емкость фазы В, в крайнее левое положение.

Рассчитать ток, проходящий через человека в этом случае, по формуле (10.7). Сделать вывод об опасности поражения.

8. Определить напряжение на корпусе оборудования относительно земли (корп.1), если уже имеет место замыкание одной из фаз на землю и произошел пробой второй фазы на корпус оборудования. Для этого, не меняя предыдущих соединений, гнездо 15 соединить с гнездом 18. Переключатель В6 поставить в положение "С" (т.е. произвести замыкание фазы С на землю). Нажав кнопку "Кн1", замкнуть фазу А на корпус  оборудования. Записать напряжение на корпусе оборудования (корп.1) относительно земли.

Рассчитать ток, протекающий через человека в этом случае, по формуле (10.7). Сделать вывод об опасности поражения.

9. Выяснить влияние сопротивления изоляции фаз на величину напряжения на корпусе оборудования относительно земли, если уже имеет место замыкание одной из фаз на землю и произошел пробой второй фазы на корпус. Измерения проводить аналогично п.6. Рассчитать ток, протекающий через человека. Сделать вывод.

10. Выяснить влияние емкости фаз на величину напряжения на корпусе оборудования относительно земли, если уже имеет место замыкание одной фазы на землю и произошел пробой второй фазы на корпус. Измерения проводить аналогично п. 7. Рассчитать ток, протекающий через человека. Сделать соответствующий вывод.

Разъединить гнезда 15 и 18. Переключатель В6 поставить в положение "Откл.".

11. Заземлить корпус оборудования. Для этого включить переключатель В5.

12. Определить напряжение на корпусе заземленного оборудования относительно земли при замыкании одной из фаз на корпус. Для этого, нажав кнопку "Кн1", замкнуть фазу А на корпус. Записать показания вольтметра.

Рассчитать ток, протекающий через человека при замыкании фазы на заземленный корпус, по формуле (10.7). Сделать вывод об опасности поражения человека при наличии защитного заземления.

13. Обесточить сеть! Переключатели В4 и В5 поставить в положение "Откл.". Отсоединить провода.

2.2.2. Исследование сети с глухозаземленной нейтралью и определение эффективности защитного заземления и зануления.

1. Смоделировать на стенде трехфазную четырехпроводную сеть с глухозаземленной нейтралью (рис.10.11). Для этого необходимо включить переключатели В2 и В3.

Рис. 10.11. Трехфазная четырехпроводная сеть с глухозаземленной нейтралью

2. Подать в сеть напряжение. Для этого переключатель В1 поставить в положение "Сеть". Подачу напряжения контролировать по сигнальным лампам, включенным в соответствующие фазы (А, В, С).

3. Для определения напряжения фазных и нулевого проводов относительно земли гнездо вольтметра 11 соединить с землей (гнездо 2), а гнездо вольтметра 12 – поочередно с фазами и нулевым проводом (гнезда 3, 4, 5, 6).

4. Определить напряжение на корпусе оборудования (корп.1) относительно земли при нормальном режиме работы. Для этого гнездо вольтметра 11 соединить с землей (гнездо 2), а гнездо вольтметра 12 с гнездом 9.

Рассчитать ток, протекающий через человека при прикосновении к корпусу оборудования, работающего в нормальном режиме, по формуле (10.7). Сделать вывод об опасности поражения.

5. Измерить напряжение на корпусе оборудования относительно земли при замыкании одной из фаз на корпус. Для этого гнездо 7 соединить с гнездом 8. Гнездо вольтметра 11 соединить с гнездом 2, а гнездо 12 - с гнездом 9 корп.1. Переключатель В4 поставить в положение А. Нажав кнопку "Кн1", замкнуть фазу А на корпус оборудования (корп.1). Одновременно снять показания вольтметра.

Рассчитать ток, протекающий через человека в этом случае, по формуле (10.7). Сделать вывод об опасности поражения.

6. Выяснить влияние сопротивления изоляции фаз на величину напряжения на корпусе оборудования при пробое одной из фаз на корпус. Для этого, не меняя предыдущих соединений, нажав кнопку "Кн1", замкнуть фазу А на корпус оборудования (корп.1). Одновременно, вращая против часовой стрелки резистор Rф , имитирующий сопротивление фазы В, проследить за изменением напряжения на корпус оборудования. Сделать соответствующий вывод.

7. Выяснить влияние емкости фаз на величину напряжения на корпусе оборудования при пробое одной из фаз на корпус. Для этого, не меняя предыдущих соединений, нажав кнопку "Кн1", замкнуть фазу на корпус оборудования. Одновременно, вращая по часовой стрелке резистор, имитирующий емкость Сф фазы В, проследить за изменением напряжения на корпусе оборудования. Сделать вывод.

8. Заземлить корпус оборудования. Для этого включить переключатель В5.

9. Определить напряжение на корпусе заземленного оборудования относительно земли при замыкании одной из фаз на корпус. Для этого, нажав кнопку "Кн1", замкнуть фазу А на корпус. Записать показания вольтметра.

Рассчитать ток, протекающий через человека в этом случае, по формуле (10.7). Сделать вывод об опасности поражения человека при наличии защитного заземления.

10. Отсоединить корпус оборудования от заземляющего устройства. Для этого выключить переключатель В5.

11. Занулить корпус оборудования. Для этого отключить вольтметр, разъединив гнезда 9 и 12, 2 и 11. Соединить гнезда 6 и 9.

12. Замкнуть одну из фаз на зануленный корпус оборудования. Фазу, в цепи которой сработала защита, контролировать по сигнальной лампочке.

13. С помощью секундомера определить время срабатывания защиты. Сделать вывод о надежности защиты человека занулением корпусов оборудования.

В содержании отчета должны быть приведены табличные данные, полученные в эксперименте, и расширенные выводы об опасности поражения человека электрическим током в зависимости от конструкции сети, режима нейтрали и различных аварийных ситуаций.

Таблица 10.2

Результаты измерений

Режимы работы

Схема исследуемой сети

Трехфазная трехпроводная электрическая сеть с изолированной нейтралью

Трехфазная четырехпроводная сеть с заземленной нейтралью

Напряжение фаз относительно земли

UА =

UВ =

UС =

UА =

UВ =

UС =

UN =

1

2

3

4

Нормальный режим работы оборудования

Напряжение на корпусе относительно земли, В

Uк =

Uк =

Величина тока, проходящего через человека при прикосновении к корпусу, А

Jчел =

Jчел =

Аварийный режим (одна из фаз замы-

Напряжение на корпусе относительно земли, В

Uк =

Uк =

Величина тока, проходя-

Jчел =

Jчел =

Продолжение табл. 10.2

1

2

3

4

кает на корпус). Изоляция хорошая

щего через человека при прикосновении к корпусу, А

Аварийный режим (одна из фаз замыкает на корпус)

Напряжение на корпусе относительно земли при уменьшении сопротивления изоляции одной из оставшихся фаз, В

Uк =

Uк =

Величина тока, проходящего через человека при прикосновении к корпусу в этом случае, А

Jчел =

Jчел =

Напряжение на корпусе относительно земли при увеличении емкости электрической сети, В

Uк =

Uк =

Величина тока, проходящего через человека в этом случае, А

Jчел =

Jчел =

Аварийный режим (одна из фаз замыкает на корпус и произошел пробой второй фазы на землю)

Напряжение на корпусе относительно земли, В

Uк =

В этом случае произойдет короткое замыкание между нулевым проводом и фазой, пробившей на землю

Величина тока, проходящего через человека в этом случае, А

Jчел =

Напряжение на корпусе относительно земли при уменьшении сопротивления изоляции оставшейся фазы, В

Uк =

Величина тока, проходящего через человека в этом случае, А

Jчел =

Напряжение на корпусе относительно земли при увеличении емкости электрической сети, В

Uк =

Величина тока, проходящего через человека в этом случае, А

Jчел =

Окончание табл. 10.2

1

2

3

4

Аварийный режим (одна из фаз замыкает на корпус), корпус оборудования заземлен

Напряжение на корпусе относительно земли, В

Uк =

Uк =

Величина тока, проходящего через человека, А

Jчел =

Jчел =

Аварийный режим (одна из фаз замыкает на корпус), корпус оборудования заземлен

Фаза, замыкание которой произошло на корпус   (А, В, С)

Фаза, в цепи которой сработала защита

Время срабатывания, с

3. Контрольные вопросы

1. В каких случаях при прикосновении к электрическому оборудованию возможно поражение электрическим током?

2. От каких факторов зависит величина напряжения, под которое попадает человек, прикоснувшись к корпусу оборудования, находящегося под напряжением?

3. Какая из разрешенных ПУЭ к применению сетей менее опасна при однофазном включении в нее человека?

4. В каких случаях применяется защитное заземление оборудования?

5. Эффективность работы заземляющего устройства.

6. Величина сопротивления заземляющего устройства.

7. В каких сетях применяется защитное зануление оборудования?

8. В чем заключается защитное действие зануления оборудования?

9. Как меняется в случае однофазного замыкания на корпус оборудования в трехфазной трехпроводной сети с изолированной нейтралью напряжение на корпусе оборудования по отношению к земле при уменьшении величины сопротивления изоляции оставшихся фаз?

10. Как меняется опасность поражения электрическим током при заземлении корпуса электрооборудования в трехфазной четырехпроводной сети с глухозаземленной нейтралью?

ЛИТЕРАТУРА

1. Лабораторный практикум по охране труда /Под ред. Н. Д. Золотницкого – М.: Высшая школа, 1979.

2. Медведев В.С., Попов Б.Г. Лабораторные работы по курсу "Охрана труда". – М.: Химия, 1972.

3. Матуско Ф.Я. Защитные устройства в электроустановках. – М.: Энергия, 1973.

4. Стенд для исследования защитных заземляющих устройств. ОТ 10. Паспорт. Одесса, 1976.




1. типологический механизм психики формирующийся как констелляция ингредиентов регулирующих силу скорость
2. Курсовая работа- Кредиты и их экономическая сущность
3. Полагая что приближенное решение задачи 1 в момент известно и вычислив коэффициенты ; и по пра
4. Вариант 5 Задача 5 Коммерческий банк предлагает сберегательные сертификаты номиналом 500 00000 со сроком пог
5. тематического сборника Что в имени тебе моем
6. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата технічних наук Луганськ 2008
7. 8 реферат дисертації на здобуття наукового ступеня кандидата юридичних наук
8. 2086415 0950286355 0681877957@ukr
9. Методические рекомендации по проведению активных форм обучения Образовательные технологии применяемые в
10. СанктПетербургский государственный инженерноэкономический университет Кафедра финансов и банковс
11. Введение Целью данной работы является проектирование электроснабжения потребителей Новоаннинского райо.html
12. Статья 87 Уголовная ответственность несовершеннолетних 1
13. pНМЕТРИЯ ЭЛЕКТРОЛИТОВ И БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ 1
14. Тестируем пакеты планирования заданий
15. Тема- Робота з папками файлами та ярликами в Windows
16. правознавство П О Н Е Д I Л О К 27
17. Вариант выводов и предложений из оценки обстановки в случаерадиоактивного заражения
18. Причины головной боли Часто причиной головной боли может быть вирусная инфекция
19.  to kill humn being 2 to kill n niml 3
20. Сценарное мышление