Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

Лабораторная работа 16 Решение дифференциальных уравнений и систем Цель работы- научиться решать

Работа добавлена на сайт samzan.ru: 2015-07-05

Лабораторная работа № 16

Решение дифференциальных уравнений и систем

Цель работы: научиться решать  дифференциальные уравнения и системы дифференциальных уравнений.

Задание к работе:

К работе допущен:

Работу выполнил:

Работу защитил:

Теоретическая часть

Решение дифференциальных уравнений и систем

Нелинейные дифференциальные уравнения и системы с такими уравнениями, как правило, не имеют аналитических методов решения, и здесь особенно важна возможность из решения численными методами. В большинстве случаев желательно представление решений в графическом виде, что также позволяет MathCad. Для решения задач такого класса можно использовать ряд функций:

Odesolve(x,b,[step]) - возвращает функцию, которая является решением дифференциального уравнения. Используется в блоке с оператором Given.

x - переменная интегрирования, действительное число

b - конечная точка отрезка интегрирования

step - величина шага по переменной интегрирования (необязательный аргумент)

Rkadapt(y,x1,x2,n,F) - возвращает матрицу решений методом Рунге-Кутта с переменным шагом для системы обыкновенных дифференциальных уравнений с начальными условиями в векторе y, правые части которых записаны в символьном векторе F, на интервале от x1 до x2 при фиксированном числе шагов n;

rkfixed(y,x1,x2,n,F) - возвращает матрицу решений методом Рунге-Кутта системы обыкновенных дифференциальных уравнений с начальными условиями в векторе y, правые части которых записаны в символьном векторе F, на интервале от x1 до x2 при фиксированном числе шагов n.

Для численного решения одиночного дифференциального уравнения в MathCAD имеется функция Odesolve, с помощью которой может быть решена как задача Коши для обыкновенного дифференциального уравнения, так и граничная задача. Эта функция входит в состав блока решения и является его заключительным ключевым словом.

Системы линейных дифференциальных уравнений первого порядка решаются с помощью функции Rkfixed.

На рис.2 приведен пример применения функции rkfixed для решения дифференциального уравнения, описывающего процесс свободных затухающих колебаний величины электрического заряда q (К) на конденсаторе с емкостью С (Ф), включенного в замкнутый контур, содержащий также сопротивление R (Ом) и индуктивность L (Гн).

Этот процесс описывается дифференциальным уравнением второго порядка

где =d2q/dt2 – ускорение изменения заряда, К/с2;

=dq/dt   – скорость изменения заряда, К/с;

b – коэффициент затухания, 1/с, ;

wc– круговая частота собственных колебаний контура, 1/с,  

Исходные данные к решению задачи:

Начальное условие: t=0, Vq=0, q=q0.

Номер

варианта

R, Ом

L, Гн

C, Ф

q0, K

1

2

3

4

5

1

3

4

6

8

5

15

25

40

55

0,0050

0,0035

0,0040

0,0075

0,0070

1

2

3

4

5

Процесс затухания колебаний рассчитать до tk

Исходное дифференциальное уравнение второго порядка может быть преобразовано в систему дифференциальных уравнений первого порядка.

Для этого введем подстановки:

q0=q

q1=

Дифференциальное уравнение второго порядка преобразуем в систему дифференциальных уравнений первого порядка:

 

Правые части системы дифференциальных уравнений записываются в вектор правых частей системы уравнений D(t,q).

Матрица Z размерности n строк по числу точек вывода результатов решения и m+1 столбцов, равным числу уравнений в системе. В столбцах матрицы содержатся значения переменных соответственно t, ,. На рис.2 представлен график изменения заряда от времени.

Практическая часть.

1 Найти частное решение y(x) дифференциального уравнения для своего варианта при произвольных начальных условиях и построить график решения.

2 Решите систему дифференциальных уравнений для своего варианта на отрезке [0,3]. Выведите значения искомых функций и их производных в точке с координатой х=1.5

Заключение

Я научился решать  дифференциальные уравнения и системы дифференциальных уравнений.


L

R

C


1. Создайте форму Студенты
2. Физическая культура с 13 января 2014г
3. Реферат- Германия во время Первой мировой войны.html
4. матухну абудзiце I дожджыкам напаiце Каб травачкi нарасцiла Каб волiкау накармiла
5. Производство соды кальцинированной
6. Как работать со сложными людьми
7. это системная деятельность государства в отношениях с личностью молодежью молодежным движением которая о
8. САНКТПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ
9. 1. Совершенствование производства на базе прогрессивной техники и технологии
10. ТЕМА 11 Прогнозування національної економіки 1
11. Тема Учет расчетов с работниками и подотчетными лицами Руководительконсультант А
12. Зельман Абрахам Ваксман
13. параллельный фильтрационный поток упругой жидкости
14. Монтескье Шарль Луи
15. а вместе с информацией о частоте их встречаемости
16. Тема- Створення простого документа за допомогою редактора Word
17.  Роль PR в государственной системе
18. Балтийский ’Варяг’.html
19. Состав раствора из I компонентов характеризуется следующими концентрационными единицами 1 i I Mi ~ моль
20. тематизировать имеющиеся знания в сфере управления производством послужила отправной точкой реализации ме