Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

102012 Системы распознавания с самообучением В ситуациях когда число классов заранее неизвестно единств

Работа добавлена на сайт samzan.ru: 2015-07-05

26.10.2012

Системы распознавания с самообучением

В ситуациях, когда число классов заранее неизвестно единственным путем формирования системы распознавания остается применение методов самообучения, которые получили наименование  Кластерного Анализа.

Под кластером понимают группу объектов, образующих в пространстве признаков компактную, в некотором смысле, область.

Выявление кластеров.

Для того чтобы определить на множестве данных кластер необходимо ввести меру сходства (подобия), которая будет положена в основу правила отнесения образов к области характеризуемой некоторым центром кластера.

рис.1

Если расстояния одинаковые, то зачисления выполняются произвольно.

Каким образом померить близость?

В качестве мер сходства чаще всего рассматривается Евклидовое расстояние между образом wke и центром соответствующей кластерной области.

В качестве альтернативы приведем не метрическую меру сходства:  (рис.2)

рис.2

Мера Танимото:  

Простой алгоритм выявления кластера:

Пусть дано m образов {w1,w2,..,wn} , описываемых векторами признаков {x1, x2,…,xn}

Центр первого класса Z1 совпадает с любым из заданных образов. Определена произвольная, не отрицательная пороговая величина T

Вычисляется расстояние между центром Z1 и следующим образом:

Если это расстояние больше порога (T), то учреждается новый центр Z2.

Иначе этот образ зачисляется в кластерную область 1. И т.д. по всем  образам.

D-расстояние

T-образ

Результаты кластеризации *определяются выбором первого центра, *порядком осмотра образов, *значением пороговой величины T, *геометрическими характеристиками данных.

Алгоритм Максиминного расстояния:

  1.  На первом шаге алгоритма один из объектов произвольным образом назначается центром первого кластера
  2.  Затем отыскивается образ, отстоящий от Z1 на наибольшем расстоянии. Он назначается Z2.
  3.  Производится вычисление расстояния между всеми остальными образами выборки и центрами Z1 и Z2.
  4.  В каждой паре определяется минимальное.
  5.  После этого выделяется максимальное из минимальных, если оно составляет значительную часть расстояния между Z1 и Z2, то соответствующий образ назначается Z3.
  6.  И т.д.

Алгоритм К внутри групповых средних.

K=2

1) Выбирают К исходных центров кластера. Этот выбор произволен, обычно в качестве исходных центров используются первый К образ из обучающего множества.

2) на К-ом шаге задонное множество образов {X} распределяется по К кластерам, по next принципу:

 X  Sj(k) || X-Zj (k) || < || X-Zi(k) ||

3) Определяются новые центры кластеров на K+1 итерации

Zj(k+1) = 1\N *X , x Sj(k)

4) Условие сходимости. Если Zj(k+1) =Zj(k) то конец

    Иначе – переход к шагу 2

Оценка результатов кластерного анализа.

  1.  Целесообразно посмотреть количество образов внутри каждой кластерной области.
  2.  Разброс образов относительно центра (дисперсия)
  3.  Расстояния между центрами кластерных областей (в комбинации с пунктом 1 вопрос о слиянии)


1. . бесстрашие 2. чистота сознания 3.
2. ВАРИАНТ 1 1 Масса сердца взрослого человека составляет в среднем- 1
3. Программная реализация алгоритма Дейкстры построение цепей минимальной длин
4. Сети сквозь поколения- почему личные связи философов важны для их творчества
5. Забавной Библии Лео Таксиль настоящее имя Габриэль Антуан ЖоганПажес 1854~1907 французский писатель и ж
6. тема управления транспортной отраслью
7. Рост и развитие ребенка
8. «Тюнинг» для бюджетирования
9. питБагатоциклові характеристики при розтягуванні
10. Охрана- ЮА Сафоновым А
11. Институт уголовного наказания
12. Брачный договор в российском праве.html
13. Лекция 03.08.05 ЭФФЕКТИВНОСТЬ КОММЕРЧЕСКОЙ СДЕЛКИ Здесь рассматриваются следующие вопросы- Доход и
14. задание
15. бытовые производственные промышленные- загрязнённые и условно чистые и атмосферные дождевые и талые
16. Реферат- Системна модель соціальної роботи
17. Трава зверобоя
18. Вероучение католицизма
19. Стратегии роста.html
20. на тему- Управление оборотными активами предприятия