Будь умным!


У вас вопросы?
У нас ответы:) SamZan.ru

Организм среда4 Стадии онтогенеза

Работа добавлена на сайт samzan.ru: 2015-07-05

                                     Содержание

 

  Введение…………………………………………………..3

   Глава 1 Влияние наследственности и окружающей среды на индивидуальное развитие организма……………………………………….4

1.1«Организм — среда»…………………………………………4

Стадии онтогенеза…………………………………………..7

1.3Роль генетики и окружающей среды в изменчивости признаков.........9

Вывод…………………………………………………………11

   Глава 2 Жизненный цикл клетки. Стадии жизненного цикла, их характеристика и значение………………………………………..12

Фазы клеточного цикла…………………………………..12

Фазы митоза………………………………………………..13

Биологическое значение митоза…………………….....17

Мейоз, стадии и разновидности мейоза………………….18

Разновидности мейоза…………………………………21

Биологическое значение мейоза …………………………21

Заключение…………………………………………………22

Список литературы…………………………………………23

                                              ВВЕДЕНИЕ

Тема влияния наследственности и окружающей среды на развитие организма актуальна, так как представить современный и будущий мир без изучения этой науки невозможно. Без изучения данной темы трудно было бы понять, почему у людей с одинаковым генотипом со временем выявляются фенотипические различия. Тема жизненного цикла клетки так же актуальна и важна. Знание строения ядра и способов репродукции клеток необходимо, так как при нарушении передачи генной информации могут возникать тяжелые заболевания.

   Цель работы: Целями освоения учебной дисциплины «Биология» являются приобретение знаний о формировании научной картины мира.

Задачи дисциплины:

1) изучить влияние окружающей среды и генетики на развитие организма;

2)изучить клетку как основную единицу строения, функционирования и развития всех живых организмов;

3) изучить процессы непрямого деления клетки

4) опираясь на новейшие достижения в области биологии, изучить стадии онтогенеза.

      

                

        

          Глава 1 Влияние наследственности и окружающей среды    

                         на    индивидуальное   развитие организма.

                                 1.1 «Организм — среда»

        Любое живое существо является организмом, отличающимся от неживой природы совокупностью определенных свойств, присущих только живой материи, — клеточной организацией и обменом веществ.

С современных позиций организм представляет собой самоорганизующуюся энергоинформационную систему, преодолевающую энтропию за счет поддержания состояния неустойчивого равновесия.                                        

        Изучение взаимосвязи и взаимодействия в системе «организм — среда», привели к пониманию того, что живые организмы, населяющие нашу планету, существуют не сами по себе. Они всецело зависят от окружающей среды и постоянно испытывают на себе ее воздействие. Каждый организм успешно выживает и размножается в конкретной среде обитания, характеризующейся относительно узким диапазоном температур, количеством осадков, почвенными условиями и т.д.

Следовательно, часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие, является их средой обитания. 

       Среда обитания организма — совокупность постоянно меняющихся условий его жизни. Из нее организмы получают все необходимое для жизни и в нее же выделяют продукты обмена веществ. Среда обитания каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком и его производственной деятельностью. При этом одни элементы могут быть частично или полностью безразличны организму, другие необходимы, а третьи оказывают отрицательное воздействие.

        Условия жизни, или условия существования, — совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может.

        Гомеостаз - самовозобновление и поддержание постоянства внутренней среды организма.

       Живым организмам присуще движение, реактивность, рост, развитие, размножение и наследственность, а также адаптация. При обмене веществ, или метаболизме, в организме протекает ряд химических реакций (например, при дыхании или фотосинтезе). Обмен веществ в организме происходит только при участии особых макромолекулярных белковых веществ - ферментов, выполняющих роль катализаторов. В регулировке процесса метаболизма в организме ферментам помогают витамины и гормоны. Вместе они осуществляют общую химическую координацию процесса метаболизма. Метаболические процессы протекают на всем пути индивидуального развития организма — онтогенеза.

        Онтогенез – это длительный и сложный процесс формирования организмов с момента образования половых клеток и оплодотворения (при половом размножении) или отдельных групп клеток (при бесполом) до завершения жизни. Индивидуальное развитие организма по определению Н.А.Кравченко - это совокупность количественных и качественных изменений, происходящих после оплодотворения яйцеклетки и образования зиготы, на протяжении всей жизни особи в соответствии с унаследованным ею генотипом и нормой реакции. Иначе онтогенез можно определить как совокупность возрастных морфологических, биохимических и физиологических изменений, протекающих в организме на протяжении всей жизни.

        От греческого «ontos» - сущее и genesis – возникновение. Онтогенез это цепь строго определенных сложнейших процессов на всех уровнях организма, в результате которого формируются присущие только особям данного вида особенности строения, жизненных процессов, способность к размножению. Развитие организма начинается с оплодотворения яйцеклетки и формирования зиготы, которая представляет собой сложное неоднородное биологическое образование. Зигота включает в себя хромосомные и нехромосомные системы отца и матери. 

       Зигота несет в себе отпечаток всей предшествующей истории развития данного вида животных, то есть филогенеза. Под генотипом следует понимать весь комплекс наследственной информации, определяющей генеральную линию развития организма. Именно этим и объясняется постоянство видовых, породных, линейных свойств и признаков животных. В процессе онтогенеза животного происходит как бы раскрытие его генотипа, завершающееся формированием фенотипа взрослой особи. Фенотип – это комплекс всех признаков и состояние особи в данный момент, на определенном этапе онтогенеза. Обусловлен фенотип наследственной природой организма и условиями среды.   

     Важнейшей биологической особенностью зиготы является способность повторять филогенез – путь исторического развития, пройденный предками. В связи с этим онтогенез представляет собой краткое повторение исторического развития вида. Проблема соотношения онтогенеза и филогенеза была рассмотрена Ч.Дарвином. Он считал, что эволюционные изменения видов в живой природе имеют в своей основе изменения, произошедшие в индивидуальном развитии. В 1866 году Э.Геккель сформулировал биологический закон: онтогенез есть краткое повторение филогенеза. Он утверждал, что филогенез – единственная причина онтогенетического развития. Признание одностороннего влияния филогенеза на онтогенез – ошибочная точка зрения. Крупнейший эволюционист А.Н.Северцов неоднократно подчеркивал, что под филогенезом следует понимать ряд исторически отобранных онтогенезов. Онтогенез не только результат филогенеза, но и его основа. В филогенезе отбираются, концентрируются и закрепляются те изменения, которые возникали в онтогенезе многих поколений и обеспечивали возможность существования вида, его развитие. Филогенез реализуется в онтогенезе через наследственность и составляет основу онтогенеза, он направляет онтогенез по пути, пройденному предками.                                                                            

        С генами родителей новая особь получает своего рода инструкции о том, когда и какие изменения должны происходить в организме, чтобы он мог успешно пройти весь жизненный путь. Таким образом, онтогенез представляет собой реализацию наследственной информации.

        В ядре зиготы содержатся два набора хромосом от двух родителей (гибридный генотип). Биологическое развитие происходит по общим диалектическим принципам развития, которое можно наблюдать в неживой природе или в обществе. Чтобы убедиться в этом, сопоставим стадии «развития вообще», и стадии нормального онтогенеза многоклеточного организма, например, человека.

                     

                                                                                                                                               

                                             

                                           Стадии онтогенеза                           Таблица1

Стадии «развития вообще»

Стадии онтогенеза человека

Подготовка предпосылок развития - внешнее движение, совершаемое пока что за пределами данной системы.

Предзародышевое развитие - образование половых клеток (гаметогенез), формирование окружающей среды будущего организма.

Возникновение - переход к внутреннему движению и возникновение системы.

Оплодотворение - слияние половых клеток, возникновение новой клетки - зиготы.

Формирование - преобразование новым процессом развития тех условий, из которых он возник.

Зародышевое развитие - эмбриогенез, построение принципиально новой многоклеточной системы.

Собственно развитие - зрелость процесса развития, его существование на своей основе.

Послезародышевое развитие -постэмбриогенез. У человека выделяют: период роста (0-20 лет), репродуктивный период (20-50 лет), период старения (после 50 лет).

Умирание - разрушение процесса развития.

Смерть - конец индивидуального развития, распад структуры.

        Индивидуальное развитие системы, в том числе организма, происходит циклично, так что восходящее развитие всякий раз сменяется нисходящим. Восходящее развитие идет от простого, низшего (предзиготическая стадия) к сложному, высшему (многоклеточный организм). Нисходящее - от сложного, высшего (многоклеточный организм) к простому, низшему (бесклеточная мертвая материя). Законы диалектики утверждают, что развитие как конечный процесс с самого начала в скрытом виде содержит тенденции, ведущие от низшего к высшему и обратно. То есть развитие имеет векторный, направленный характер.

Развитие находится под контролем двух начал - генетического (внутреннего) и эпигенетического (внешнего). Найдем эти начала в развивающемся организме.

     1.  Внутренняя, генетическая программа развития заложена в ДНК зиготы. Это генотип организма. При размножении клеток - от зиготы до самой последней клетки тела - ДНК каждый раз удваивается и делится поровну, так что все клетки получают полный набор генов. В ДНК записана информация обо всех белках организма.

     При этом надо иметь в виду, что существуют гены и белки двух классов: структурные и регуляторные. Первые обеспечивают построение рабочих структур клеток и межклеточного вещества, ферментативный катализ, транспорт и прочие жизненно важны функции. Вторые регулируют активность первых, то есть гены-регуляторы производят соответствующие регуляторные белки, которые управляют активностью структурных генов. Сейчас установлено, что и среди регуляторных генов есть взаимозависимость - одни гены активируются другими. Таким образом, гены образуют функциональные цепи с заранее предопределенной последовательностью включения. Работает принцип домино: продукт первого гена активирует второй ген, продукт второго - третий и т. д. Благодаря слаженной работе таких конвейеров контролируются тесно увязанные шаги морфогенеза, развитие приобретает динамичный и направленный (векторный) характер.

       Однако организм - очень сложная система, чтобы ее развитие было выстроено по простому алгоритму домино. Отдельные морфогенетические процессы часто идут независимо и параллельно. В разных зачатках эмбриона, а потом в клетках разных тканей эти процессы расходятся, идет дифференциация  клеток по функциям. Но при этом все клетки имеют один и тот же набор генов. Возникает ключевой вопрос проблемы клеточной дифференциации - почему при одинаковом наборе генов синтезируются разные белки и получаются разные клетки? Современная биология развития дает ответ и на этот сложный вопрос.

       2.  Внешняя, эпигенетическая программа развития контролирует и направляет реализацию генетической программы. Под действием внешних сигналов, биологически активных веществ, через посредство клеточных рецепторов и внутриклеточных мессенджеров (молекул-посланников) происходит избирательная активация одних генов и подавление других.

В итоге в дифференцированных клетках разных органов и тканей работают не все гены, а только та их часть, которая ответственна за данную тканевую функцию. Генетики называют этот механизм дифференциальной экспрессией генов. Но встает новый вопрос: что является самой первой командой к дифференциации клеток? Ведь развитие начинается с одной клетки – зиготы.

     1.2 Роль генетики и окружающей среды в изменчивости                                                              

                                                 признаков

     Большую роль в формировании признаков организмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип. Изменчивость организмов, возникающая под влиянием факторов внешней среды и не затрагивающая генотипа, называется модификационной.

Модификационная изменчивость называется фенотипической, так как под влияние внешней среды происходит изменение фенотипа, генотип остается неизменным. Классическим примером изменчивости признаков под действием факторов внешней среды является разнолистность у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, - округлую, а находящиеся в воздушной среде, - стреловидные. Если же все растение оказывается полностью погруженным в воду, его листья только лентовидные. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) возникает загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна. Если же человек лишен действия ультрафиолетовых лучей, изменение окраски кожи у него не происходит.

Модификационная изменчивость носит групповой характер, то есть все особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки. Например, если сосуд с эвгленами зелеными поместить в темноту, то все они утратят зеленую окраску, если же вновь выставить на свет - все опять станут зелеными.

Модификационная изменчивость является определенной, то есть всегда соответствует факторам, которые ее вызывают. Так, ультрафиолетовые лучи изменяют окраску кожи человека (так как усиливается синтез пигмента), но не изменяют пропорций тела, а усиленные физические нагрузки влияют на степень развития мышц, а не на цвет кожи.

Однако не следует забывать, что развитие любого признака определяется, прежде всего, генотипом. Вместе с тем, гены определяют возможность развития признака, а его появление и степень выраженности во многом определяется условиями среды. Так, зеленая окраска растений зависит не только от генов, контролирующих синтез хлорофилла, но и от наличия света. При отсутствии света хлорофилл не синтезируется.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Даже в случае нормального развития признака степень его выраженности различна. Так, на поле пшеницы можно обнаружить растения с крупными колосьями (20 см и более) и очень мелкими (3-4 см). Это объясняется тем, что генотип определяет определенные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Как правило, количественные признаки (урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, нежели качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Окружающая среда генотипа сформированного организма, например, человека, включает цепь управляющих факторов: факторы внешней среды (свет, тепло, другие природные явления, социальное окружение, трудовая деятельность, образование и т. п.), общий ритм и режим жизни, качество питания, активность нервной системы, гормональные регуляторы клеток, внутриклеточные мессенджеры и модуляторы активности генов. В этом же ряду стоят все окружающие нас живые организмы, в том числе паразиты, микробы, вирусы.  В результате клетки и сами организмы могут иметь разную скорость размножения и роста, разную продолжительность жизни,  разную интенсивность синтеза белков и, следовательно, разное проявление всех жизненных функций. Например, даже у однояйцовых близнецов, с абсолютно одинаковым генотипом, со временем выявляются фенотипические различия (рост, мышечная сила, структура кожи, трудовые навыки и др.), если они выросли в разных условиях, допустим - в городе и деревне.

Из сказанного следуют важные определения:

  1.  фенотип - это совокупность всех признаков и свойств организма, формирующихся в процессе взаимодействия его генотипа (генетической структуры) и внешней среды;
  2.  в фенотипе никогда не реализуются все генетические возможности;
  3.  в конкретных условиях развивается конкретный фенотип.

Таким образом, в развитии фенотипа, то есть конкретного организма со всеми его индивидуальными свойствами, имеет место единство генетического и эпигенетического начал, проявляющих себя на разных уровнях организации жизни - молекулярно-генетическом, клеточном, организменном.

Вывод

Наследственность складывается из совокупности всех генов, которые передаются организму обоими родителями. Организм и его гены на протяжении всей жизни взаимодействуют с окружающей средой. Окружающая среда представляет собой очень широкое понятие, включающее в себя все: от внутриклеточной и межклеточной среды внутри самого организма до масштабных внешних влияний, с которыми он сталкивается от своего зачатия до самой смерти. Индивидуальная окружающая среда включает в себя все стимулы, на которые организм реагирует. Из этого следует, что окружающая среда у двух организмов всегда будет разной, даже если поместить их в одни и те же условия. Наследственность определяет то, каким может стать организм, но развивается он под одновременным влиянием обоих факторов и наследственности, и среды. Все признаки и свойства любого организма  являются результатом взаимодействия его генотипа и среды.

    

  Глава 2 Жизненный цикл клетки. Стадии жизненного цикла, их               

                                      характеристика и значение.

       Жизненный цикл клетки отражает все закономерные структурно-функциональные изменения, происходящие с клеткой во времени. Жизненный цикл – это время существования клетки от момента ее образования путем деления материнской клетки до собственного деления или естественной гибели.

        У клеток сложного организма (например, человека) жизненный цикл клетки может быть различным. Высокоспециализированные клетки (эритроциты, нервные клетки, клетки поперечнополосатой мускулатуры) не размножаются. Их жизненный цикл состоит из рождения, выполнения предназначенных функций, гибели (гетерокаталитической интерфазы).

        Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него.     

        Митотический цикл – это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

                    Фазы клеточного цикла:

  1.   пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;
  2.  синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка. В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохондриальной ДНК (основная же ее часть реплицируется в G2 период);
  3.  постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных);
  4.  после этого наступает собственно митоз.

        Митоз — непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерно для данного вида организма число и форму хромосом, а, следовательно, постоянное количество ДНК.

        На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу. Первые описания фаз митоза и установление их последовательности были предприняты в 70—80-х годах XIX века. В конце 1870-х — начале 1880-х годов немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз».

                                                  Фазы митоза:

  1.  В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. В цитоплазме клетки имеется небольшое гранулярное тельце, называемое центриолью. В начале профазы центриоль делится, и дочерние центриоли отходят в противоположные концы клетки.  От каждой центриоли отходят тонкие нити в виде лучей, образующие звезду; между центриолями возникает веретено, состоящее из ряда протоплазматических нитей, называемых нитями веретена. Эти нити построены из белка, сходного по своим свойствам с сократительными белками мышечных волокон. Они расположены в виде двух конусов, сложенных основание к основанию, так что веретено оказывается узким у концов, или полюсов, около центриолей, и широким в центре, или у экватора. Нити веретена протягиваются от экватора к полюсам; они состоят из более плотной протоплазмы ядра. Веретено представляет собой определенную структуру: при помощи микроманипулятора можно ввести в клетку тонкую иглу и перемещать ею веретено. Веретена, выделенные из делящихся клеток, содержат белок, в основном один вид белка, а также небольшое количество РНК. В то время как центриоли разъединяются, и формируется веретено, хромосомы в ядре сокращаются, становятся короче и толще. Если раньше могло быть и не видно, что они состоят из двух элементов, то теперь это ясно заметно.
  2.  Прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов эндоплазматического ретикулума. В хромосомах с каждой стороны центромеры в прометафазе образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками. Эти нити отходят от обеих сторон каждой хромосомы, идут в противоположных направлениях и взаимодействуют с нитями биполярного веретена. При этом хромосомы начинают интенсивно двигаться.  
  3.   Метафаза. Хроматиды прикрепляются к фибриллам веретена кинетохорами. Оказавшись связанными с обеими центросомами, хроматиды движутся к экватору веретена до тех пор, пока их центромеры не выстроятся по экватору веретена перпендикулярно его оси. Это позволяет хроматидам беспрепятственно двигаться к соответствующим полюсам. Характерное для метафазы размещение хромосом очень важно для сегрегации хромосом, т.е. расхождения сестринских хроматид. Если отдельная хромосома «замешкается» в своем движении к экватору веретена, задерживается обычно и начало анафазы. Метафаза завершается разделением сестринских хроматид.
  4.  Анафаза продолжается обычно всего несколько минут. Анафаза начинается внезапным расщеплением каждой хромосомы, которое обусловлено разделением сестринских хроматид в точке их соединения в центромере.

Это расщепление, разделяющее кинетохоры, не зависит от других событий митоза и происходит даже в хромосомах, не прикрепленных к митотическому веретену. Оно позволяет полярным силам веретена, действующим на метафазную пластинку, начать перемещение каждой хроматиды к соответствующим полюсам веретена со скоростью порядка 1 мкм/мин. Если бы не было нитей веретена, то хромосомы расталкивались бы во все стороны, но благодаря наличию этих нитей один полный набор дочерних хромосом собирается у одного полюса, а другой — у другого. Во время движения к полюсам хромосомы обычно принимают V-образную форму, причем вершина их обращена к полюсу. Центромера располагается у вершины, и, сила, заставляющая хромосому двигаться к полюсу, приложена к центромере. Хромосомы, утратившие центромеру во время митоза совсем не движутся

  1.  Телофаза начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды распределяются между дочерними клетками более или менее равномерно. На этом завершается деление ядра, называемое также кариокинезом; затем происходит деление тела клетки, или цитокинез.                                        

                                             Фазы митоза                            Таблица 2

В большинстве случаев весь процесс митоза занимает от 1 до 2 ч. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму; она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки. Материал клеточной пластинки вырабатывается эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточной пластинки цитоплазматическую мембрану, и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки.

Частота митозов в разных тканях и у разных видов резко различна. Например, в красном костном мозге человека, где в каждую секунду образуется 10 000 000 эритроцитов, в каждую секунду должно происходить 10 000 000 митозов.

 

               Биологическое значение митоза

Процесс митоза обеспечивает строго равномерное распределение хромосом между двумя дочерними ядрами, так что в многоклеточном организме все клетки имеют совершенно одинаковые (по числу и по характеру) наборы хромосом. Хромосомы содержат генетическую информацию, закодированную в ДНК, и поэтому регулярный, упорядоченный митотический процесс обеспечивает также полную передачу всей информации каждому из дочерних ядер; в результате каждая клетка обладает всей генетической информацией, необходимой для развития всех признаков организма. В связи с этим становится понятно, почему одна клетка, взятая из полностью дифференцированного взрослого растения, может при подходящих условиях развиться в целое растение. Митотическое деление клеток лежит в основе всех форм бесполого размножения, как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

                         

                   

                   Мейоз. Стадии и разновидности мейоза.

      Мейоз (от греч. meiosis – уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления — цифрой II. Мейозу предшествует интерфаза, в процессе которой происходит удвоение ДНК и клетки вступают в мейоз с хромосомным набором 2n4с (n — хромосомы, с — хроматиды). 

  1.  Профаза I мейоза отличается значительной продолжительностью и    

        сложностью. Ее условно разделяют на пять последовательных стадий:

          лептотена, зиготена, пахитена, диплотена и диакинез. Каждая из

         этих стадий обладает своими отличительными особенностями. 

  1.  Лептотена (стадия тонких нитей). Для этой стадии характерно наличие тонких и длинных хромосомных нитей. Число хромосомных нитей соответствует диплоидному числу хромосом. Каждая хромосомная нить состоит из двух хроматид, соединенных общим участком — центромерой. Хроматиды очень близко сближены, и поэтому каждая хромосома кажется одиночной. 
  2.  Зиготена (стадия соединения нитей). Моментом перехода лептотены в зиготену считают начало синапса. Синапс – процесс тесной конъюгации двух гомологичных хромосом. Подобная конъюгация отличается высокой точностью. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов. В других случаях синапс может начаться во внутренних участках хромосом и продолжаться по направлению к их концам. В результате каждый ген входит в соприкосновение с гомологичным ему геном той же хромосомы. Такой тесный контакт между гомологичными участками хроматид обеспечивается благодаря специализированной структуре синаптонемальному комплексу. Синаптонемальный комплекс представляет собой длинное белковое образование, напоминающее веревочную лестницу, к противоположным сторонам которого плотно прилегают два гомолога. 
  3.  Пахитена (стадия толстых нитей). Как только завершается синапс по всей длине хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. Соединение гомологов становится столь тесным, что уже трудно отличить две отдельные хромосомы. Однако это пары хромосом, которые называют бивалентами. В этой стадии происходит кроссинговер, или перекрест хромосом.

Кроссинговер (от англ. crossingover - пересечение, скрещивание) - взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы несут комбинации генов в новом сочетании. Например, ребенок родителей, один из которых имеет темные волосы и карие глаза, а другой - светловолосый и голубоглазый, может иметь карие глаза и светлые волосы. 

  1.  Диплотена (стадия двойных нитей). Стадия диплотены начинается с разделения конъюгировавших хромосом. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»), и что каждая хромосома состоит из двух хроматид. Всего в биваленте структурно обособлены четыре хроматиды, поэтому бивалент называют тетрадой. В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.
  2.  Диакинез. Диплотена незаметно переходит в диакинез, завершающую стадию профазы I. На этой стадии биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена деления завершают профазу I.
  3.  Метафаза I. В метафазе I биваленты располагаются в экваториальной плоскости клетки. Нити веретена прикрепляются к центромерам гомологичных хромосом.
  4.  Анафаза I. В анафазе I к полюсам отходят не хроматиды, как при митозе, а гомологичные хромосомы из каждого бивалента. В этом принципиальное отличие мейоза от митоза. При этом расхождение гомологичных хромосом носит случайный характер. 
  5.  Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление, и клетка переходит в короткую интерфазу, после которой наступает второе мейотическое деление. От обычной интерфазы эта интерфаза отличается тем, что в ней не происходит синтеза ДНК и дупликации хромосом, хотя синтез РНК, белка и других веществ может происходить.

    Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

    Затем наступает второе деление мейоза, сходное с обычным митозом.
  6.   Профаза II очень короткая. Она характеризуется спирализацией хромосом, исчезновением ядерной оболочки, ядрышка, формированием веретена деления.
  7.  Метафаза II. Хромосомы располагаются в экваториальной плоскости. Центромеры, соединяющие пары хроматид, делятся (в первый и единственный раз в течение мейоза), что свидетельствует о начале анафазы II. 
  8.  В анафазе II хроматиды расходятся и быстро увлекаются нитями веретена от плоскости экватора к противоположным полюсам. 
  9.  Телофаза II. Для этой стадии характерно: деспирализация хромосом, образование ядер, цитокинез. В итоге из двух клеток мейоза I в телофазе II образуются четыре клетки с гаплоидным числом хромосом. Описанный процесс типичен для образования мужских половых клеток. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна яйцеклетка, а три мелких направительных (редукционных) тельца впоследствии отмирают. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

    Таким образом, для мейоза характерно два деления: в ходе первого расходятся хромосомы, в ходе второго - хроматиды. 

                                        Разновидности мейоза

 В зависимости от места в жизненном цикле организма выделяют три основных типа мейоза: зиготный, или начальный, споровый, или промежуточный, гаметный, или конечный. Зиготный тип происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет. Этот тип характерен для многих грибов и водорослей. У высших растений наблюдается споровый тип мейоза, который проходит перед цветением и приводит к образованию гаплоидного гаметофита. Позднее в гаметофите образуются гаметы. Для всех многоклеточных животных и ряда низших растений свойственен гаметный, или конечный, тип мейоза. Протекает он в половых органах и приводит к образованию гамет. 

                          
Биологическое значение мейоза

  1.  поддерживается постоянный кариотип в ряду поколений организмов, размножающихся половым путем (после оплодотворения образуется зигота, содержащая характерный для данного вида набор хромосом).
  2.  обеспечивается перекомбинация генетического материала как на уровне целых хромосом (новые комбинации хромосом), так и на уровне участков хромосом.

                                                          


Заключение

В реферате были рассмотрены две темы - это «Влияние наследственности и окружающей среды на индивидуальное развитие организма» и «Жизненный цикл клетки. Стадии жизненного цикла, их характеристика и значение». Я многое узнала об этих темах, так как они подробно  раскрываются в моём реферате. Я пришла к выводу, что независимо от генов, окружающая среда имеет огромное влияние на индивидуальное развитие каждого организма и это очень важно, ведь, как и в прошлом, настоящем, так и в будущем организмы должны приспосабливаться к среде, а это довольно сложно. Мне удалось изучить процессы деления клетки и стадии онтогенеза.


Список литературы:

1) Научно-информационный журнал “Биофайл”/ [Электронный ресурс]/Режим доступа: http://biofile.ru/bio/16180.html (дата обращения: 02.12.2013 г.)

2) Александров А.А./  [Электронный ресурс]/

Режим доступа: http://humbio.ru/ (дата обращения: 02.12.2013 г.)

3)  [Электронный ресурс]/Режим доступа: http://ru.wikipedia.org 

4)  [Электронный ресурс]/Режим доступа: http://knowledge.allbest.ru/  (дата обращения: 02.12.2013 г.)

5)  [Электронный ресурс]/Режим доступа: http://cribs.me/ 

6)  [Электронный ресурс]/Режим доступа: http://chel-o-vek.ru/ (дата обращения: 02.12.2013)

7)  [Электронный ресурс]/Режим доступа: http://macedonian.enacademic.com 

 


1. КРЕДИТНОЇ ПОЛІТИКИ Центральний банк як головний орган державного регулювання економіки в межах своїх по
2. КОНТРОЛЬНАЯ РАБОТА ПО КУРСУ ПРАВОВЫЕ ОСНОВЫ БАНКРОТСТВА Выполни
3. Eй было тогда восемь лет
4. тема и источники права Право ~ это система общеобязательный правил поведения установленных или санкционир
5. Управление маркетингом в отраслях
6. на тему- Поведение химических веществ в окружающей среде
7. Средства передачи и получения управленческой информации на современных предприятиях
8. ТЕМАМ НА ТЕМУ Выбор технологии и состава оборудования для производства проката рельса Р75
9. Победа в отношении которой заключён договор о развитии застроенной территории ограниченной улицами- Куйб
10. Романс в прозе Чехова
11. Задание- выбрать верныеАвтор закона развития эпигенетического принципа согласно которому на каждом новом э
12. Лекция 12 10 Дифракция на круглом отверстии В плане историческом теоретическое исследование явлений
13. Господарські операції
14. Назначение и условие работы тягового электродвигателя ЭД118А магистрального грузового теплово
15. УТВЕРЖДАЮ Глава МО Коткинский сельсовет О
16. Тема Методи вивчення будови металів Мета
17. Понятие и особенности административноправовых норм Нормы административного права обладая качествами п
18. Колос Постанова 1 від 21
19. Факторный анализ Кредиторская и депонентская задолженность
20. по теме Приложения MS Eqution Editor и MS Grph в текстовом процессоре MS Word Задание 1